Skip to content
master
Switch branches/tags
Go to file
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DOI PyPI version Python Support Documentation Status Build Status Coverage Status Code style: black GitHub last commit GitHub commits since latest release (by SemVer) CodeFactor

clana

clana is a toolkit for classifier analysis. One key contribution of clana is Confusion Matrix Ordering (CMO) as explained in chapter 5 of Analysis and Optimization of Convolutional Neural Network Architectures. It is a technique that can be applied to any multi-class classifier and helps to understand which groups of classes are most similar.

Installation

The recommended way to install clana is:

$ pip install clana --user

If you want the latest version:

$ git clone https://github.com/MartinThoma/clana.git; cd clana
$ pip install -e . --user

Usage

$ clana --help
Usage: clana [OPTIONS] COMMAND [ARGS]...

  Clana is a toolkit for classifier analysis.

  See https://arxiv.org/abs/1707.09725, Chapter 4.

Options:
  --version  Show the version and exit.
  --help     Show this message and exit.

Commands:
  distribution   Get the distribution of classes in a dataset.
  get-cm         Generate a confusion matrix from predictions and ground...
  get-cm-simple  Generate a confusion matrix.
  visualize      Optimize and visualize a confusion matrix.

The visualize command gives you images like this:

Confusion Matrix after Confusion Matrix Ordering of the WiLI-2018 dataset

MNIST example

$ cd docs/
$ python mnist_example.py  # creates `train-pred.csv` and `test-pred.csv`
$ clana get-cm --gt gt-train.csv  --predictions train-pred.csv --n 10
2019-09-14 09:47:30,655 - root - INFO - cm was written to 'cm.json'
$ clana visualize --cm cm.json --zero_diagonal
Score: 13475
2019-09-14 09:49:41,593 - root - INFO - n=10
2019-09-14 09:49:41,593 - root - INFO - ## Starting Score: 13475.00
2019-09-14 09:49:41,594 - root - INFO - Current: 13060.00 (best: 13060.00, hot_prob_thresh=100.0000%, step=0, swap=False)
[...]
2019-09-14 09:49:41,606 - root - INFO - Current: 9339.00 (best: 9339.00, hot_prob_thresh=100.0000%, step=238, swap=False)
Score: 9339
Perm: [0, 6, 5, 8, 3, 2, 1, 7, 9, 4]
2019-09-14 09:49:41,639 - root - INFO - Classes: [0, 6, 5, 8, 3, 2, 1, 7, 9, 4]
Accuracy: 93.99%
2019-09-14 09:49:41,725 - root - INFO - Save figure at '/home/moose/confusion_matrix.tmp.pdf'
2019-09-14 09:49:41,876 - root - INFO - Found threshold for local connection: 398
2019-09-14 09:49:41,876 - root - INFO - Found 9 clusters
2019-09-14 09:49:41,877 - root - INFO - silhouette_score=-0.012313948323292875
    1: [0]
    1: [6]
    1: [5]
    1: [8]
    1: [3]
    1: [2]
    1: [1]
    2: [7, 9]
    1: [4]

This gives

Label Manipulation

Prepare a labels.csv which has to have a header row:

$ clana visualize --cm cm.json --zero_diagonal --labels mnist/labels.csv

Data distribution

$ clana distribution --gt gt.csv --labels labels.csv [--out out/] [--long]

prints one line per label, e.g.

60% cat (56789 elements)
20% dog (12345 elements)
 5% mouse (1337 elements)
 1% tux (314 elements)

If --out is specified, it creates a horizontal bar chart. The first bar is the most common class, the second bar is the second most common class, ...

It uses the short labels, except --long is added to the command.

Metrics

$ clana metrics --gt gt.csv --preds preds.csv

gives the following metrics by

  • Line 1: Accuracy
  • Line 2: Precision
  • Line 3: Recall
  • Line 4: F1-Score
  • Line 5: Mean accuracy

Visualizations

See visualizations

Usage as a library

>>> import numpy as np
>>> arr = np.array([[9, 4, 7, 3, 8, 5, 2, 8, 7, 6],
                    [4, 9, 2, 8, 5, 8, 7, 3, 6, 7],
                    [7, 2, 9, 1, 6, 3, 0, 8, 5, 4],
                    [3, 8, 1, 9, 4, 7, 8, 2, 5, 6],
                    [8, 5, 6, 4, 9, 6, 3, 7, 8, 7],
                    [5, 8, 3, 7, 6, 9, 6, 4, 7, 8],
                    [2, 7, 0, 8, 3, 6, 9, 1, 4, 5],
                    [8, 3, 8, 2, 7, 4, 1, 9, 6, 5],
                    [7, 6, 5, 5, 8, 7, 4, 6, 9, 8],
                    [6, 7, 4, 6, 7, 8, 5, 5, 8, 9]])
>>> from clana.optimize import simulated_annealing
>>> result = simulated_annealing(arr)
>>> result.cm
array([[9, 8, 7, 6, 5, 4, 3, 2, 1, 0],
       [8, 9, 8, 7, 6, 5, 4, 3, 2, 1],
       [7, 8, 9, 8, 7, 6, 5, 4, 3, 2],
       [6, 7, 8, 9, 8, 7, 6, 5, 4, 3],
       [5, 6, 7, 8, 9, 8, 7, 6, 5, 4],
       [4, 5, 6, 7, 8, 9, 8, 7, 6, 5],
       [3, 4, 5, 6, 7, 8, 9, 8, 7, 6],
       [2, 3, 4, 5, 6, 7, 8, 9, 8, 7],
       [1, 2, 3, 4, 5, 6, 7, 8, 9, 8],
       [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]])
>>> result.perm
array([2, 7, 0, 4, 8, 9, 5, 1, 3, 6])

You can visualize the result.cm and use the result.perm to get your labels in the same order:

# Just some example labels
# ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10']
>>> labels = [str(el) for el in range(11)]
>>> np.array(labels)[result.perm]
array(['2', '7', '0', '4', '8', '9', '5', '1', '3', '6'], dtype='<U2')