Skip to content

Commit 1ee403c

Browse files
authored
Fix typos (#81)
* Update arellano.md * Update ifp_egm.md * Update jax_intro.md * Update markov_asset.md * Update mle.md * Update newtons_method.md
1 parent 0c77235 commit 1ee403c

File tree

6 files changed

+9
-9
lines changed

6 files changed

+9
-9
lines changed

lectures/arellano.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -403,7 +403,7 @@ class Arellano_Economy:
403403
self.y_grid = jax.device_put(y_grid)
404404
self.P = jax.device_put(P)
405405
406-
# Output recieved while in default, with same shape as y_grid
406+
# Output received while in default, with same shape as y_grid
407407
self.def_y = jnp.minimum(def_y_param * jnp.mean(self.y_grid), self.y_grid)
408408
409409
def params(self):

lectures/ifp_egm.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -317,7 +317,7 @@ Notice in the code below that
317317
```{code-cell} ipython3
318318
def K_egm(a_in, σ_in, constants, sizes, arrays):
319319
"""
320-
The vectorzied operator K using EGM.
320+
The vectorized operator K using EGM.
321321
322322
"""
323323
@@ -598,7 +598,7 @@ plt.show()
598598
599599
### Timing
600600
601-
Now let's compare excution time of the two methods
601+
Now let's compare execution time of the two methods
602602
603603
```{code-cell} ipython3
604604
qe.tic()

lectures/jax_intro.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -671,7 +671,7 @@ Try writing a version of this operation for JAX, using all the same
671671
parameters.
672672

673673
If you are running your code on a GPU, you should be able to achieve
674-
significantly faster exection.
674+
significantly faster execution.
675675

676676

677677
```{exercise-end}

lectures/markov_asset.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -205,7 +205,7 @@ $$
205205
$$
206206
207207
Here $\{\epsilon_{c, t}\}$ and $\{\epsilon_{d, t}\}$ are IID and standard
208-
normal, and independent of eachother.
208+
normal, and independent of each other.
209209
210210
We can think of $\{X_t\}$ as an aggregate shock that affects both consumption
211211
growth and firm profits (and hence dividends).

lectures/mle.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -347,7 +347,7 @@ $$
347347
\beta_2 = 0.5
348348
$$
349349

350-
Try to obtain the approximate values of $\beta_0,\beta_1,\beta_2$, by simulating a Poission Regression Model such that
350+
Try to obtain the approximate values of $\beta_0,\beta_1,\beta_2$, by simulating a Poisson Regression Model such that
351351

352352
$$
353353
y_t \sim {\rm Poisson}(\lambda_t)
@@ -391,7 +391,7 @@ We compute $\lambda$ using {eq}`lambda_mle`
391391
λ = jnp.exp(β_0 + β_1 * x + β_2 * x**2)
392392
```
393393

394-
Let's define $y_t$ by sampling from a Poission distribution with mean as $\lambda_t$.
394+
Let's define $y_t$ by sampling from a Poisson distribution with mean as $\lambda_t$.
395395

396396
```{code-cell} ipython3
397397
y = jax.random.poisson(key, λ, shape)

lectures/newtons_method.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -105,7 +105,7 @@ for this particular question.
105105

106106
### A High-Dimensional Version
107107

108-
Let's now shift to a linear algebra formulation, which alllows us to handle
108+
Let's now shift to a linear algebra formulation, which allows us to handle
109109
arbitrarily many goods.
110110

111111
The supply function remains unchanged,
@@ -325,7 +325,7 @@ initLs = [jnp.ones(3),
325325
```
326326

327327

328-
Then define the multivariate version of the formula for the [law of motion of captial](https://python.quantecon.org/newton_method.html#solow)
328+
Then define the multivariate version of the formula for the [law of motion of capital](https://python.quantecon.org/newton_method.html#solow)
329329

330330
```{code-cell} ipython3
331331
def multivariate_solow(k, A=A, s=s, α=α, δ=δ):

0 commit comments

Comments
 (0)