You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Fundamental matrix and array processing capabilities are provided by the excellent [NumPy](http://www.numpy.org/) library.
@@ -218,8 +214,7 @@ See them all [here](http://docs.scipy.org/doc/scipy/reference/index.html).
218
214
219
215
### Graphics
220
216
221
-
```{index}
222
-
single: Matplotlib
217
+
```{index} single: Matplotlib
223
218
```
224
219
225
220
The most popular and comprehensive Python library for creating figures and graphs is [Matplotlib](http://matplotlib.org/), with functionality including
@@ -258,8 +253,7 @@ Other graphics libraries include
258
253
259
254
It's useful to be able to manipulate symbolic expressions, as in Mathematica or Maple.
260
255
261
-
```{index}
262
-
single: SymPy
256
+
```{index} single: SymPy
263
257
```
264
258
265
259
The [SymPy](http://www.sympy.org/) library provides this functionality from within the Python shell.
@@ -315,8 +309,7 @@ the last few years.
315
309
316
310
#### Pandas
317
311
318
-
```{index}
319
-
single: Pandas
312
+
```{index} single: Pandas
320
313
```
321
314
322
315
One of the most popular libraries for working with data is [pandas](http://pandas.pydata.org/).
@@ -343,26 +336,22 @@ df.mean()
343
336
344
337
#### Other Useful Statistics Libraries
345
338
346
-
```{index}
347
-
single: statsmodels
339
+
```{index} single: statsmodels
348
340
```
349
341
350
342
*[statsmodels](http://statsmodels.sourceforge.net/) --- various statistical routines
351
343
352
-
```{index}
353
-
single: scikit-learn
344
+
```{index} single: scikit-learn
354
345
```
355
346
356
347
*[scikit-learn](http://scikit-learn.org/) --- machine learning in Python (sponsored by Google, among others)
357
348
358
-
```{index}
359
-
single: pyMC
349
+
```{index} single: pyMC
360
350
```
361
351
362
352
*[pyMC](http://pymc-devs.github.io/pymc/) --- for Bayesian data analysis
363
353
364
-
```{index}
365
-
single: pystan
354
+
```{index} single: pystan
366
355
```
367
356
368
357
*[pystan](https://pystan.readthedocs.org/en/latest/) Bayesian analysis based on [stan](http://mc-stan.org/)
@@ -371,8 +360,7 @@ single: pystan
371
360
372
361
Python has many libraries for studying graphs.
373
362
374
-
```{index}
375
-
single: NetworkX
363
+
```{index} single: NetworkX
376
364
```
377
365
378
366
One well-known example is [NetworkX](http://networkx.github.io/).
@@ -414,70 +402,59 @@ plt.show()
414
402
415
403
### Cloud Computing
416
404
417
-
```{index}
418
-
single: cloud computing
405
+
```{index} single: cloud computing
419
406
```
420
407
421
408
Running your Python code on massive servers in the cloud is becoming easier and easier.
* The [Starcluster](http://star.mit.edu/cluster/) interface to Amazon's EC2.
474
453
475
-
```{index}
476
-
single: parallel computing; copperhead
454
+
```{index} single: parallel computing; copperhead
477
455
```
478
456
479
-
```{index}
480
-
single: parallel computing; pycuda
457
+
```{index} single: parallel computing; pycuda
481
458
```
482
459
483
460
* GPU programming through [PyCuda](https://wiki.tiker.net/PyCuda), [PyOpenCL](https://mathema.tician.de/software/pyopencl/), [Theano](http://deeplearning.net/software/theano/) or similar.
@@ -489,32 +466,27 @@ There are many other interesting developments with scientific programming in Pyt
0 commit comments