@@ -46,7 +46,7 @@ of fields such as data science and machine learning.
4646Here's a popularity comparison over time against STATA, SAS, and [ dplyr] ( https://dplyr.tidyverse.org/ ) courtesy of Stack Overflow Trends
4747
4848``` {figure} /_static/lecture_specific/pandas/pandas_vs_rest.png
49- :scale: 30
49+ :scale: 40
5050```
5151
5252Just as [ NumPy] ( http://www.numpy.org/ ) provides the basic array data type plus core array operations, pandas
@@ -68,11 +68,11 @@ Throughout the lecture, we will assume that the following imports have taken
6868place
6969
7070``` {code-cell} ipython
71+ %matplotlib inline
7172import pandas as pd
7273import numpy as np
7374import matplotlib.pyplot as plt
7475plt.rcParams["figure.figsize"] = [10,8] # Set default figure size
75- %matplotlib inline
7676import requests
7777```
7878
@@ -472,7 +472,7 @@ ticker = read_data(ticker_list)
472472Complete the program to plot the result as a bar graph like this one:
473473
474474``` {figure} /_static/lecture_specific/pandas/pandas_share_prices.png
475- :scale: 50
475+ :scale: 80
476476```
477477
478478(pd_ex2)=
@@ -490,7 +490,7 @@ indices_list = {'^GSPC': 'S&P 500',
490490Complete the program to show summary statistics and plot the result as a time series graph like this one:
491491
492492``` {figure} /_static/lecture_specific/pandas/pandas_indices_pctchange.png
493- :scale: 53
493+ :scale: 80
494494```
495495
496496## Solutions
@@ -565,7 +565,7 @@ yearly_returns.describe()
565565Then, to plot the chart
566566
567567``` {code-cell} python3
568- fig, axes = plt.subplots(2, 2, figsize=(10, 6 ))
568+ fig, axes = plt.subplots(2, 2, figsize=(10, 8 ))
569569
570570for iter_, ax in enumerate(axes.flatten()): # Flatten 2-D array to 1-D array
571571 index_name = yearly_returns.columns[iter_] # Get index name per iteration
0 commit comments