-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
second_order_cone_program_examples.cc
677 lines (621 loc) · 25 KB
/
second_order_cone_program_examples.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
#include "drake/solvers/test/second_order_cone_program_examples.h"
#include <limits>
#include <memory>
#include <optional>
#include <utility>
#include "drake/common/test_utilities/eigen_matrix_compare.h"
#include "drake/solvers/decision_variable.h"
#include "drake/solvers/test/mathematical_program_test_util.h"
namespace drake {
namespace solvers {
namespace test {
const double kInf = std::numeric_limits<double>::infinity();
std::ostream& operator<<(std::ostream& os, EllipsoidsSeparationProblem value) {
os << "EllipsoidsSeparationProblem::";
switch (value) {
case EllipsoidsSeparationProblem::kProblem0: {
os << "kProblem0";
return os;
}
case EllipsoidsSeparationProblem::kProblem1: {
os << "kProblem1";
return os;
}
case EllipsoidsSeparationProblem::kProblem2: {
os << "kProblem2";
return os;
}
case EllipsoidsSeparationProblem::kProblem3: {
os << "kProblem3";
return os;
}
}
DRAKE_UNREACHABLE();
}
std::vector<EllipsoidsSeparationProblem> GetEllipsoidsSeparationProblems() {
return {EllipsoidsSeparationProblem::kProblem0,
EllipsoidsSeparationProblem::kProblem1,
EllipsoidsSeparationProblem::kProblem2,
EllipsoidsSeparationProblem::kProblem3};
}
TestEllipsoidsSeparation::TestEllipsoidsSeparation() {
switch (GetParam()) {
case EllipsoidsSeparationProblem::kProblem0: {
x1_ = Eigen::Vector3d::Zero();
x2_ = Eigen::Vector3d::Zero();
x2_(0) = 2.0;
R1_ = 0.5 * Eigen::Matrix3d::Identity();
R2_ = Eigen::Matrix3d::Identity();
break;
}
case EllipsoidsSeparationProblem::kProblem1: {
x1_ = Eigen::Vector3d::Zero();
x2_ = Eigen::Vector3d::Zero();
x2_(0) = 1.0;
R1_ = Eigen::Matrix3d::Identity();
R2_ = Eigen::Matrix3d::Identity();
break;
}
case EllipsoidsSeparationProblem::kProblem2: {
x1_ = Eigen::Vector2d(1.0, 0.2);
x2_ = Eigen::Vector2d(0.5, 0.4);
R1_.resize(2, 2);
R1_ << 0.1, 0.6, 0.2, 1.3;
R2_.resize(2, 2);
R2_ << -0.4, 1.5, 1.7, 0.3;
break;
}
case EllipsoidsSeparationProblem::kProblem3: {
x1_ = Eigen::Vector3d(1.0, 0.2, 0.8);
x2_ = Eigen::Vector3d(3.0, -1.5, 1.9);
R1_.resize(3, 3);
R1_ << 0.2, 0.4, 0.2, -0.2, -0.1, 0.3, 0.2, 0.1, 0.1;
R2_.resize(3, 2);
R2_ << 0.1, 0.2, -0.1, 0.01, -0.2, 0.1;
break;
}
}
const int kXdim = x1_.rows();
t_ = prog_.NewContinuousVariables<2>("t");
a_ = prog_.NewContinuousVariables(kXdim, "a");
// Add Lorentz cone constraints
// t1 >= |R1'*a|
// t2 >= |R2'*a|
// Introduce matrices
// A_lorentz1 = [1 0;0 R1']
// A_lorentz2 = [1 0;0 R2']
// b_lorentz1 = 0;
// b_lorentz2 = 0;
// And both A_lorentz1*[t;a]+b_lorentz1, A_lorentz2*[t;a]+b_lorentz2 are
// in the Lorentz cone.
VectorX<symbolic::Expression> lorentz_expr1(1 + R1_.cols());
VectorX<symbolic::Expression> lorentz_expr2(1 + R2_.cols());
lorentz_expr1 << t_(0), R1_.transpose() * a_;
lorentz_expr2 << t_(1), R2_.transpose() * a_;
prog_.AddLorentzConeConstraint(lorentz_expr1);
prog_.AddLorentzConeConstraint(lorentz_expr2);
// a'*(x2 - x1) = 1
prog_.AddLinearEqualityConstraint((x2_ - x1_).transpose(), 1.0, a_);
// Add cost
auto cost = prog_.AddLinearCost(Eigen::Vector2d(1.0, 1.0), t_).evaluator();
}
void TestEllipsoidsSeparation::SolveAndCheckSolution(
const SolverInterface& solver,
const std::optional<SolverOptions>& solver_options, double tol) {
MathematicalProgramResult result =
RunSolver(prog_, solver, {}, solver_options);
// Check the solution.
// First check if each constraint is satisfied.
const auto& a_value = result.GetSolution(a_);
const auto& R1a_value = R1_.transpose() * a_value;
const auto& R2a_value = R2_.transpose() * a_value;
EXPECT_NEAR(result.GetSolution(t_(0)), R1a_value.norm(), 100 * tol);
EXPECT_NEAR(result.GetSolution(t_(1)), R2a_value.norm(), 100 * tol);
EXPECT_NEAR((x2_ - x1_).dot(a_value), 1.0, tol);
// Now check if the solution is meaningful, that it really finds a separating
// hyperplane.
// The separating hyperplane exists if and only if p* <= 1
const double p_star = result.GetSolution(t_(0)) + result.GetSolution(t_(1));
const bool is_separated = p_star <= 1.0;
const double t1 = result.GetSolution(t_(0));
const double t2 = result.GetSolution(t_(1));
if (is_separated) {
// Then the hyperplane a' * x = 0.5 * (a'*x1 + t1 + a'*x2 - t2)
const double b1 = a_value.dot(x1_) + t1;
const double b2 = a_value.dot(x2_) - t2;
const double b = 0.5 * (b1 + b2);
// Verify that b - a'*x1 >= |R1' * a|
// a'*x2 - b >= |R2' * a|
EXPECT_GE(b - a_value.dot(x1_), (R1_.transpose() * a_value).norm());
EXPECT_GE(a_value.dot(x2_) - b, (R2_.transpose() * a_value).norm());
} else {
// Now solve another SOCP to find a point y in the intersecting region
// y = x1 + R1*u1
// y = x2 + R2*u2
// 1 >= |u1|
// 1 >= |u2|
MathematicalProgram prog_intersect;
const int kXdim = R1_.rows();
auto u1 = prog_intersect.NewContinuousVariables(R1_.cols(), "u1");
auto u2 = prog_intersect.NewContinuousVariables(R2_.cols(), "u2");
auto y = prog_intersect.NewContinuousVariables(kXdim, "y");
// Add the constraint that both
// [1; u1] and [1; u2] are in the Lorentz cone.
VectorX<symbolic::Expression> e1(1 + u1.rows());
VectorX<symbolic::Expression> e2(1 + u2.rows());
e1(0) = 1;
e2(0) = 1;
for (int i = 0; i < u1.rows(); ++i) {
e1(i + 1) = +u1(i);
}
for (int i = 0; i < u2.rows(); ++i) {
e2(i + 1) = +u2(i);
}
prog_intersect.AddLorentzConeConstraint(e1);
prog_intersect.AddLorentzConeConstraint(e2);
// Add constraint y = x1 + R1*u1
// y = x2 + R2*u2
Eigen::MatrixXd A1(y.rows(), y.rows() + R1_.cols());
A1.block(0, 0, y.rows(), y.rows()) =
Eigen::MatrixXd::Identity(y.rows(), y.rows());
A1.block(0, y.rows(), y.rows(), R1_.cols()) = -R1_;
Eigen::MatrixXd A2(y.rows(), y.rows() + R2_.cols());
A2.block(0, 0, y.rows(), y.rows()) =
Eigen::MatrixXd::Identity(y.rows(), y.rows());
A2.block(0, y.rows(), y.rows(), R2_.cols()) = -R2_;
prog_intersect.AddLinearEqualityConstraint(A1, x1_, {y, u1});
prog_intersect.AddLinearEqualityConstraint(A2, x2_, {y, u2});
result = RunSolver(prog_intersect, solver);
// Check if the constraints are satisfied
const auto& u1_value = result.GetSolution(u1);
const auto& u2_value = result.GetSolution(u2);
EXPECT_LE(u1_value.norm(), 1);
EXPECT_LE(u2_value.norm(), 1);
const auto& y_value = result.GetSolution(y);
EXPECT_TRUE(CompareMatrices(y_value, x1_ + R1_ * u1_value, tol,
MatrixCompareType::absolute));
EXPECT_TRUE(CompareMatrices(y_value, x2_ + R2_ * u2_value, tol,
MatrixCompareType::absolute));
}
}
std::ostream& operator<<(std::ostream& os, QPasSOCPProblem value) {
os << "QPasSOCPProblem::";
switch (value) {
case QPasSOCPProblem::kProblem0: {
os << "kProblem0";
return os;
}
case QPasSOCPProblem::kProblem1: {
os << "kProblem1";
return os;
}
}
DRAKE_UNREACHABLE();
}
std::vector<QPasSOCPProblem> GetQPasSOCPProblems() {
return {QPasSOCPProblem::kProblem0, QPasSOCPProblem::kProblem1};
}
TestQPasSOCP::TestQPasSOCP() {
switch (GetParam()) {
case QPasSOCPProblem::kProblem0:
// Un-constrained QP
Q_ = Eigen::Matrix2d::Identity();
c_ = Eigen::Vector2d::Ones();
A_ = Eigen::RowVector2d(0, 0);
b_lb_ = Vector1<double>(-kInf);
b_ub_ = Vector1<double>(kInf);
break;
case QPasSOCPProblem::kProblem1:
// Constrained QP
Q_ = Eigen::Matrix3d::Zero();
Q_(0, 0) = 1.0;
Q_(1, 1) = 1.3;
Q_(2, 2) = 2.0;
Q_(1, 2) = 0.01;
Q_(0, 1) = -0.2;
c_ = Eigen::Vector3d(-1.0, -2.0, 1.2);
A_.resize(2, 3);
A_ << 1, 0, 2, 0, 1, 3;
b_lb_ = Eigen::Vector2d(-1, -2);
b_ub_ = Eigen::Vector2d(2, 4);
break;
}
const int kXdim = Q_.rows();
const Eigen::MatrixXd Q_symmetric = 0.5 * (Q_ + Q_.transpose());
x_socp_ = prog_socp_.NewContinuousVariables(kXdim, "x");
y_ = prog_socp_.NewContinuousVariables<1>("y")(0);
Eigen::LLT<Eigen::MatrixXd, Eigen::Upper> lltOfQ(Q_symmetric);
Eigen::MatrixXd Q_sqrt = lltOfQ.matrixU();
VectorX<symbolic::Expression> e(2 + kXdim);
e << y_, 2, Q_sqrt * x_socp_;
prog_socp_.AddRotatedLorentzConeConstraint(e);
prog_socp_.AddLinearConstraint(A_, b_lb_, b_ub_, x_socp_);
auto cost_socp1 = std::make_shared<LinearCost>(c_.transpose());
prog_socp_.AddCost(cost_socp1, x_socp_);
prog_socp_.AddLinearCost(+y_);
x_qp_ = prog_qp_.NewContinuousVariables(kXdim, "x");
prog_qp_.AddQuadraticCost(Q_, c_, x_qp_);
prog_qp_.AddLinearConstraint(A_, b_lb_, b_ub_, x_qp_);
}
void TestQPasSOCP::SolveAndCheckSolution(const SolverInterface& solver,
double tol) {
MathematicalProgramResult result;
result = RunSolver(prog_socp_, solver);
const auto& x_socp_value = result.GetSolution(x_socp_);
const double objective_value_socp =
c_.dot(x_socp_value) + result.GetSolution(y_);
// Check the solution
const int kXdim = Q_.rows();
const Eigen::MatrixXd Q_symmetric = 0.5 * (Q_ + Q_.transpose());
const Eigen::LLT<Eigen::MatrixXd, Eigen::Upper> lltOfQ(Q_symmetric);
const Eigen::MatrixXd Q_sqrt = lltOfQ.matrixU();
EXPECT_NEAR(2 * result.GetSolution(y_), (Q_sqrt * x_socp_value).squaredNorm(),
tol);
EXPECT_GE(result.GetSolution(y_), 0);
result = RunSolver(prog_qp_, solver);
const auto& x_qp_value = result.GetSolution(x_qp_);
const Eigen::RowVectorXd x_qp_transpose = x_qp_value.transpose();
Eigen::VectorXd Q_x_qp = Q_ * x_qp_value;
double objective_value_qp = c_.dot(x_qp_value);
for (int i = 0; i < kXdim; ++i) {
objective_value_qp += 0.5 * x_qp_value(i) * Q_x_qp(i);
}
// TODO(hongkai.dai@tri.global): tighten the tolerance. socp does not really
// converge to true optimal yet.
EXPECT_TRUE(CompareMatrices(x_qp_value, x_socp_value, 200 * tol,
MatrixCompareType::absolute));
EXPECT_NEAR(objective_value_qp, objective_value_socp, tol);
}
std::ostream& operator<<(std::ostream& os, FindSpringEquilibriumProblem value) {
os << "FindSpringEquilibriumProblem::";
switch (value) {
case FindSpringEquilibriumProblem::kProblem0: {
os << "kProblem0";
return os;
}
}
DRAKE_UNREACHABLE();
}
std::vector<FindSpringEquilibriumProblem> GetFindSpringEquilibriumProblems() {
return {FindSpringEquilibriumProblem::kProblem0};
}
TestFindSpringEquilibrium::TestFindSpringEquilibrium() {
switch (GetParam()) {
case FindSpringEquilibriumProblem::kProblem0: {
weight_.resize(5);
weight_ << 1, 2, 3, 2.5, 4;
spring_rest_length_ = 0.2;
spring_stiffness_ = 10;
end_pos1_ << 0, 1;
end_pos2_ << 1, 0.9;
}
}
const int num_nodes = weight_.rows();
x_ = prog_.NewContinuousVariables(num_nodes, "x");
y_ = prog_.NewContinuousVariables(num_nodes, "y");
t_ = prog_.NewContinuousVariables(num_nodes - 1, "t");
prog_.AddBoundingBoxConstraint(end_pos1_, end_pos1_,
{x_.head<1>(), y_.head<1>()});
prog_.AddBoundingBoxConstraint(
end_pos2_, end_pos2_,
{x_.segment<1>(num_nodes - 1), y_.segment<1>(num_nodes - 1)});
prog_.AddBoundingBoxConstraint(Eigen::VectorXd::Zero(num_nodes - 1),
Eigen::VectorXd::Constant(num_nodes - 1, kInf),
t_);
// sqrt((x(i)-x(i+1))^2 + (y(i) - y(i+1))^2) <= ti + spring_rest_length
for (int i = 0; i < num_nodes - 1; ++i) {
Vector3<symbolic::Expression> lorentz_cone_expr;
lorentz_cone_expr << t_(i) + spring_rest_length_, x_(i) - x_(i + 1),
y_(i) - y_(i + 1);
prog_.AddLorentzConeConstraint(lorentz_cone_expr);
}
// Add constraint z >= t_1^2 + .. + t_(N-1)^2
z_ = prog_.NewContinuousVariables<1>("z")(0);
VectorX<symbolic::Expression> rotated_lorentz_cone_expr(1 + num_nodes);
rotated_lorentz_cone_expr << z_, 1, t_;
prog_.AddRotatedLorentzConeConstraint(rotated_lorentz_cone_expr);
prog_.AddLinearCost(spring_stiffness_ / 2 * z_);
prog_.AddLinearCost(weight_.dot(y_));
}
void TestFindSpringEquilibrium::SolveAndCheckSolution(
const SolverInterface& solver,
const std::optional<SolverOptions>& solver_options, double tol) {
const MathematicalProgramResult result =
RunSolver(prog_, solver, {}, solver_options);
const std::optional<SolverId> solver_id = result.get_solver_id();
ASSERT_TRUE(solver_id);
const int num_nodes = weight_.rows();
for (int i = 0; i < num_nodes - 1; ++i) {
Eigen::Vector2d spring(
result.GetSolution(x_(i + 1)) - result.GetSolution(x_(i)),
result.GetSolution(y_(i + 1)) - result.GetSolution(y_(i)));
if (spring.norm() < spring_rest_length_) {
EXPECT_LE(result.GetSolution(t_(i)), 1E-3);
EXPECT_GE(result.GetSolution(t_(i)), 0 - 1E-10);
} else {
EXPECT_TRUE(std::abs(spring.norm() - spring_rest_length_ -
result.GetSolution(t_(i))) < 1E-3);
}
}
const auto& t_value = result.GetSolution(t_);
EXPECT_NEAR(result.GetSolution(z_), t_value.squaredNorm(), 1E-3);
// Now test equilibrium.
for (int i = 1; i < num_nodes - 1; i++) {
Eigen::Vector2d left_spring(
result.GetSolution(x_(i - 1)) - result.GetSolution(x_(i)),
result.GetSolution(y_(i - 1)) - result.GetSolution(y_(i)));
Eigen::Vector2d left_spring_force;
double left_spring_length = left_spring.norm();
if (left_spring_length < spring_rest_length_) {
left_spring_force.setZero();
} else {
left_spring_force = (left_spring_length - spring_rest_length_) *
spring_stiffness_ * left_spring / left_spring_length;
}
Eigen::Vector2d right_spring(
result.GetSolution(x_(i + 1)) - result.GetSolution(x_(i)),
result.GetSolution(y_(i + 1)) - result.GetSolution(y_(i)));
Eigen::Vector2d right_spring_force;
double right_spring_length = right_spring.norm();
if (right_spring_length < spring_rest_length_) {
right_spring_force.setZero();
} else {
right_spring_force = (right_spring_length - spring_rest_length_) *
spring_stiffness_ * right_spring /
right_spring_length;
}
const Eigen::Vector2d weight_i(0, -weight_(i));
EXPECT_TRUE(CompareMatrices(
weight_i + left_spring_force + right_spring_force,
Eigen::Vector2d::Zero(), tol, MatrixCompareType::absolute));
}
}
MaximizeGeometricMeanTrivialProblem1::MaximizeGeometricMeanTrivialProblem1()
: prog_{new MathematicalProgram()},
x_{prog_->NewContinuousVariables<1>()(0)},
cost_{nullptr} {
prog_->AddBoundingBoxConstraint(-kInf, 10, x_);
Eigen::Vector2d A(2, 3);
Eigen::Vector2d b(3, 2);
auto cost = prog_->AddMaximizeGeometricMeanCost(
A, b, Vector1<symbolic::Variable>(x_));
cost_ = std::make_unique<Binding<LinearCost>>(std::move(cost));
}
void MaximizeGeometricMeanTrivialProblem1::CheckSolution(
const MathematicalProgramResult& result, double tol) {
ASSERT_TRUE(result.is_success());
EXPECT_NEAR(result.GetSolution(x_), 10, tol);
const double cost_expected = -std::sqrt(23.0 * 32);
EXPECT_NEAR(result.get_optimal_cost(), cost_expected, tol);
EXPECT_NEAR(result.EvalBinding(*cost_)(0), cost_expected, tol);
}
MaximizeGeometricMeanTrivialProblem2::MaximizeGeometricMeanTrivialProblem2()
: prog_{new MathematicalProgram()},
x_{prog_->NewContinuousVariables<1>()(0)},
cost_{nullptr} {
prog_->AddBoundingBoxConstraint(-kInf, 10, x_);
const Eigen::Vector3d A(2, 3, 4);
const Eigen::Vector3d b(3, 2, 5);
auto cost = prog_->AddMaximizeGeometricMeanCost(
A, b, Vector1<symbolic::Variable>(x_));
cost_ = std::make_unique<Binding<LinearCost>>(std::move(cost));
}
void MaximizeGeometricMeanTrivialProblem2::CheckSolution(
const MathematicalProgramResult& result, double tol) {
ASSERT_TRUE(result.is_success());
EXPECT_NEAR(result.GetSolution(x_), 10, tol);
const double cost_expected = -std::pow(23 * 32 * 45, 1.0 / 4);
EXPECT_NEAR(result.get_optimal_cost(), cost_expected, tol);
EXPECT_NEAR(result.EvalBinding(*cost_)(0), cost_expected, tol);
}
SmallestEllipsoidCoveringProblem::SmallestEllipsoidCoveringProblem(
const Eigen::Ref<const Eigen::MatrixXd>& p)
: prog_{new MathematicalProgram()},
a_{prog_->NewContinuousVariables(p.rows())},
p_{p},
cost_{nullptr} {
auto cost = prog_->AddMaximizeGeometricMeanCost(a_);
cost_ = std::make_unique<Binding<LinearCost>>(std::move(cost));
const Eigen::MatrixXd p_dot_p = (p_.array() * p_.array()).matrix();
const int num_points = p.cols();
prog_->AddLinearConstraint(p_dot_p.transpose(),
Eigen::VectorXd::Constant(num_points, -kInf),
Eigen::VectorXd::Ones(num_points), a_);
}
void SmallestEllipsoidCoveringProblem::CheckSolution(
const MathematicalProgramResult& result, double tol) const {
const auto a_sol = result.GetSolution(a_);
// p_dot_a_dot_p(i) is pᵢᵀ diag(a) * pᵢ
const Eigen::RowVectorXd p_dot_a_dot_p =
a_sol.transpose() * (p_.array() * p_.array()).matrix();
// All points are within the ellipsoid.
EXPECT_TRUE((p_dot_a_dot_p.array() <= 1 + tol).all());
// At least one point is on the boundary of the ellipsoid.
const int num_points = p_.cols();
EXPECT_TRUE(
((p_dot_a_dot_p.transpose().array() - Eigen::ArrayXd::Ones(num_points))
.abs() <= Eigen::ArrayXd::Constant(num_points, tol))
.any());
const double cost_expected = -std::pow(
a_sol.prod(), 1.0 / std::pow(2, (std::ceil(std::log2(a_sol.rows())))));
EXPECT_NEAR(result.get_optimal_cost(), cost_expected, tol);
EXPECT_NEAR(result.EvalBinding(*cost_)(0), cost_expected, tol);
CheckSolutionExtra(result, tol);
}
// Cover the 4 points (1, 1), (1, -1), (-1, 1) and (-1, -1).
SmallestEllipsoidCoveringProblem1::SmallestEllipsoidCoveringProblem1()
: SmallestEllipsoidCoveringProblem(
(Eigen::Matrix<double, 2, 4>() << 1, 1, -1, -1, 1, -1, 1, -1)
.finished()) {}
void SmallestEllipsoidCoveringProblem1::CheckSolutionExtra(
const MathematicalProgramResult& result, double tol) const {
ASSERT_TRUE(result.is_success());
// The smallest ellipsoid is a = (0.5, 0.5);
const Eigen::Vector2d a_expected(0.5, 0.5);
EXPECT_TRUE(CompareMatrices(result.GetSolution(a()), a_expected, tol));
EXPECT_NEAR(result.get_optimal_cost(), -0.5, tol);
}
void SolveAndCheckSmallestEllipsoidCoveringProblems(
const SolverInterface& solver,
const std::optional<SolverOptions>& solver_options, double tol) {
SmallestEllipsoidCoveringProblem1 prob1;
if (solver.available()) {
MathematicalProgramResult result;
solver.Solve(prob1.prog(), {}, solver_options, &result);
prob1.CheckSolution(result, tol);
}
// Now try 3D points;
Eigen::Matrix<double, 3, 4> points_3d;
// arbitrary points.
// clang-format off
points_3d << 0.1, 0.2, -1.2, 0.5,
-0.3, 0.1, -2.5, 0.8,
1.2, 0.3, 1.5, 3.2;
// clang-format on
SmallestEllipsoidCoveringProblem prob_3d(points_3d);
if (solver.available()) {
MathematicalProgramResult result;
solver.Solve(prob_3d.prog(), {}, solver_options, &result);
prob_3d.CheckSolution(result, tol);
}
// Now try arbitrary 4d points.
Eigen::Matrix<double, 4, 6> points_4d;
// clang-format off
points_4d << 1, 2, 3, 4, 5, 6,
0.1, 1.4, 3.2, -2.3, 0.7, -0.3,
-0.2, -3.1, 0.4, 1.5, 1.8, 1.9,
-1, -2, -3, -4, -5, -6;
// clang-format on
SmallestEllipsoidCoveringProblem prob_4d(points_4d);
if (solver.available()) {
MathematicalProgramResult result;
solver.Solve(prob_4d.prog(), {}, solver_options, &result);
prob_4d.CheckSolution(result, tol);
}
}
void TestSocpDualSolution1(const SolverInterface& solver,
const SolverOptions& solver_options, double tol) {
MathematicalProgram prog;
auto x = prog.NewContinuousVariables<2>();
auto constraint1 = prog.AddLorentzConeConstraint(
Vector3<symbolic::Expression>(2., 2 * x(0), 3 * x(1) + 1));
prog.AddLinearCost(x(1));
if (solver.available()) {
MathematicalProgramResult result;
solver.Solve(prog, {} /* empty initial guess */, solver_options, &result);
// The dual solution for lorentz cone constraint are the values of the dual
// variables, lies in the dual cone of a Lorentz cone (which is also a
// Lorentz cone). Notice that this is NOT the shadow price as in the linear
// constraints.
EXPECT_TRUE(CompareMatrices(result.GetDualSolution(constraint1),
Eigen::Vector3d(1. / 3, 0, 1. / 3), tol));
auto bb_con = prog.AddBoundingBoxConstraint(0.1, kInf, x(1));
solver.Solve(prog, {}, solver_options, &result);
ASSERT_TRUE(result.is_success());
EXPECT_NEAR(result.GetSolution(x(1)), 0.1, tol);
// The cost is x(1), hence the shadow price for the constraint x(1) >= 0
// should be 1.
EXPECT_TRUE(
CompareMatrices(result.GetDualSolution(bb_con), Vector1d(1.), tol));
}
}
void TestSocpDualSolution2(const SolverInterface& solver,
const SolverOptions& solver_options, double tol) {
MathematicalProgram prog;
auto x = prog.NewContinuousVariables<1>()(0);
auto constraint1 = prog.AddRotatedLorentzConeConstraint(
Vector3<symbolic::Expression>(2., x + 1.5, x));
auto constraint2 =
prog.AddLorentzConeConstraint(Vector2<symbolic::Expression>(1, x + 1));
prog.AddLinearCost(x);
if (solver.available()) {
MathematicalProgramResult result;
solver.Solve(prog, {}, solver_options, &result);
ASSERT_TRUE(result.is_success());
const Eigen::Vector3d constraint1_dual = Eigen::Vector3d(0.125, 0.5, 0.5);
EXPECT_TRUE(CompareMatrices(result.GetDualSolution(constraint1),
constraint1_dual, tol));
// This Lorentz cone is not activated, hence its dual should be zero.
EXPECT_TRUE(CompareMatrices(result.GetDualSolution(constraint2),
Eigen::Vector2d(0, 0), tol));
}
}
void TestSocpDuplicatedVariable1(
const SolverInterface& solver,
const std::optional<SolverOptions>& solver_options, double tol) {
MathematicalProgram prog;
const auto x = prog.NewContinuousVariables<2>();
// Add the constraint that
// (1, x0, sqrt(3)*x1, -sqrt(3)*x0) is in the Lorentz cone.
Eigen::Matrix<double, 4, 3> A;
A.setZero();
A(1, 0) = 1;
A(2, 1) = std::sqrt(3);
A(3, 2) = -std::sqrt(3);
prog.AddLorentzConeConstraint(A, Eigen::Vector4d(1, 0, 0, 0),
Vector3<symbolic::Variable>(x(0), x(1), x(0)));
prog.AddLinearCost(x(0) + x(1));
if (solver.available()) {
MathematicalProgramResult result;
solver.Solve(prog, std::nullopt, solver_options, &result);
EXPECT_TRUE(result.is_success());
const Eigen::Vector2d x_sol = result.GetSolution(x);
EXPECT_NEAR(4 * x_sol(0) * x_sol(0) + 3 * x_sol(1) * x_sol(1), 1, tol);
}
}
void TestSocpDuplicatedVariable2(
const SolverInterface& solver,
const std::optional<SolverOptions>& solver_options, double tol) {
MathematicalProgram prog;
// Intentionally create dummy variable to test that the constraint doesn't
// take all variables in `prog`.
auto dummy = prog.NewContinuousVariables<2>();
auto x = prog.NewContinuousVariables<2>();
// A * [x(0), x(1), x(0), x(1)] + b = [1; 2x(0); 3x(1)]
Eigen::Matrix<double, 3, 4> A;
// clang-format off
A << 1, 0, -1, 0,
3, 0, -1, 0,
2, 2, -2, 1;
// clang-format on
Eigen::Vector3d b(1, 0, 0);
prog.AddLorentzConeConstraint(A, b, {x, x});
prog.AddLinearCost(-x(0) - x(1));
if (solver.available()) {
MathematicalProgramResult result;
solver.Solve(prog, std::nullopt, solver_options, &result);
EXPECT_TRUE(result.is_success());
const auto x_sol = result.GetSolution(x);
// This expected solution is obtained by solving the equation
// 4x0²+9x1² = 1
// x0+x1= sqrt(13)/6
// where x0+x1=sqrt(13)/6 is obtained from the Jensen's inequality
// (4x0²+9x1²) * (1/4 + 1/9) >= (x0+x1)²
// Also by the fact
// (4x0²+9x1²) * (1/4 + 1/9) <= (1/4 + 1/9) = 13 / 36 = (sqrt(13)/6)²
// We obtain x + y <= sqrt(13)/6 and the bound is tight.
Eigen::Vector2d x_expected(3 * std::sqrt(13) / 26, 4 * std::sqrt(13) / 78);
EXPECT_TRUE(CompareMatrices(x_sol, x_expected, tol));
}
}
void TestDegenerateSOCP(const SolverInterface& solver) {
MathematicalProgram prog;
auto x = prog.NewContinuousVariables<3>();
// A * [x(0), x(1), x(2), x(1), x(2)] = [x(0); x(1)-x(1); x(2)-x(2)]
Eigen::Matrix<double, 3, 5> A;
A.setZero();
A(0, 0) = 1;
A.block<2, 2>(1, 1) = Eigen::Matrix2d::Identity();
A.block<2, 2>(1, 3) = -Eigen::Matrix2d::Identity();
prog.AddLorentzConeConstraint(A, Eigen::Vector3d::Zero(), {x, x.tail<2>()});
if (solver.available()) {
MathematicalProgramResult result;
solver.Solve(prog, std::nullopt, std::nullopt, &result);
EXPECT_TRUE(result.is_success());
const auto x_sol = result.GetSolution(x);
EXPECT_GE(x_sol(0), 0);
}
}
} // namespace test
} // namespace solvers
} // namespace drake