Skip to content

β›ˆοΈ RumbleDB 1.14.0 "Acacia"🌳 for Apache Spark | Run queries on your large-scale, messy JSON-like data (JSON, text, CSV, Parquet, ROOT, AVRO, SVM...) | No install required (just a jar to download) | Declarative Machine Learning and more

master
Switch branches/tags
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
Apr 12, 2021
Jul 20, 2021
src
Jul 28, 2021
Jul 5, 2021

RumbleDB

With RumbleDB, you can query with ease a lot of different nested, heterogeneous data formats like JSON, CSV, Parquet, Avro, LibSVM, text, etc.

RumbleDB exposes a query language rather than a DataFrame API, for more flexibility, more productivity but also because a lot of data simply will not fit in DataFrames.

You can query it in place from any local file systems or data lakes (Azure blob storage, Amazon S3, HDFS, etc).

You can prepare, clean up, validate your data and put it right into your machine learning pipelines with RumbleDB ML.

Getting started: you will find a Jupyter notebook that introduces the JSONiq language on top of RumbleDB here. You can also run it locally if you prefer.

The documentation also contains an introduction specific to RumbleDB and how you can read input datasets, but we have not converted it to Jupyter notebooks yet (this will follow).

The documentation of the latest official release is available here.

The documentation of the current master (for the adventurous and curious) is available here.

About

β›ˆοΈ RumbleDB 1.14.0 "Acacia"🌳 for Apache Spark | Run queries on your large-scale, messy JSON-like data (JSON, text, CSV, Parquet, ROOT, AVRO, SVM...) | No install required (just a jar to download) | Declarative Machine Learning and more

Topics

Resources

License

Packages

No packages published