Skip to content

Commit 91fa46f

Browse files
author
Shunichi09
authored
Merge pull request #4 from Shunichi09/develop
Develop
2 parents e716272 + f741ec6 commit 91fa46f

32 files changed

+1368
-32
lines changed

Environments.md

Lines changed: 56 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,56 @@
1+
# Enviroments
2+
3+
| Name | Linear | Nonlinear | State Size | Input size |
4+
|:----------|:---------------:|:----------------:|:----------------:|:----------------:|
5+
| First Order Lag System || x | 4 | 2 |
6+
| Two wheeled System (Constant Goal) | x || 3 | 2 |
7+
| Two wheeled System (Moving Goal) (Coming soon) | x || 3 | 2 |
8+
| Cartpole (Swing up) | x || 4 | 1 |
9+
10+
## FistOrderLagEnv
11+
12+
### System equation.
13+
14+
<img src="assets/firstorderlag.png" width="550">
15+
16+
You can set arbinatry time constant, tau. The default is 0.63 s
17+
18+
### Cost.
19+
20+
<img src="assets/quadratic_score.png" width="300">
21+
22+
Q = diag[1., 1., 1., 1.],
23+
R = diag[1., 1.]
24+
25+
X_g denote the goal states.
26+
27+
## TwoWheeledEnv
28+
29+
### System equation.
30+
31+
<img src="assets/twowheeled.png" width="300">
32+
33+
### Cost.
34+
35+
<img src="assets/quadratic_score.png" width="300">
36+
37+
Q = diag[5., 5., 1.],
38+
R = diag[0.1, 0.1]
39+
40+
X_g denote the goal states.
41+
42+
## CatpoleEnv (Swing up)
43+
44+
System equation.
45+
46+
<img src="assets/cartpole.png" width="600">
47+
48+
You can set arbinatry parameters, mc, mp, l and g.
49+
50+
Default settings are as follows:
51+
52+
mc = 1, mp = 0.2, l = 0.5, g = 9.81
53+
54+
### Cost.
55+
56+
<img src="assets/cartpole_score.png" width="300">
Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,2 +1 @@
11
import numpy as np
2-
Lines changed: 218 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,218 @@
1+
import numpy as np
2+
3+
class CartPoleConfigModule():
4+
# parameters
5+
ENV_NAME = "CartPole-v0"
6+
TYPE = "Nonlinear"
7+
TASK_HORIZON = 500
8+
PRED_LEN = 50
9+
STATE_SIZE = 4
10+
INPUT_SIZE = 1
11+
DT = 0.02
12+
# cost parameters
13+
R = np.diag([0.01])
14+
# bounds
15+
INPUT_LOWER_BOUND = np.array([-3.])
16+
INPUT_UPPER_BOUND = np.array([3.])
17+
# parameters
18+
MP = 0.2
19+
MC = 1.
20+
L = 0.5
21+
G = 9.81
22+
23+
def __init__(self):
24+
"""
25+
"""
26+
# opt configs
27+
self.opt_config = {
28+
"Random": {
29+
"popsize": 5000
30+
},
31+
"CEM": {
32+
"popsize": 500,
33+
"num_elites": 50,
34+
"max_iters": 15,
35+
"alpha": 0.3,
36+
"init_var":9.,
37+
"threshold":0.001
38+
},
39+
"MPPI":{
40+
"beta" : 0.6,
41+
"popsize": 5000,
42+
"kappa": 0.9,
43+
"noise_sigma": 0.5,
44+
},
45+
"MPPIWilliams":{
46+
"popsize": 5000,
47+
"lambda": 1.,
48+
"noise_sigma": 0.9,
49+
},
50+
"iLQR":{
51+
"max_iter": 500,
52+
"init_mu": 1.,
53+
"mu_min": 1e-6,
54+
"mu_max": 1e10,
55+
"init_delta": 2.,
56+
"threshold": 1e-6,
57+
},
58+
"DDP":{
59+
"max_iter": 500,
60+
"init_mu": 1.,
61+
"mu_min": 1e-6,
62+
"mu_max": 1e10,
63+
"init_delta": 2.,
64+
"threshold": 1e-6,
65+
},
66+
"NMPC-CGMRES":{
67+
},
68+
"NMPC-Newton":{
69+
},
70+
}
71+
72+
@staticmethod
73+
def input_cost_fn(u):
74+
""" input cost functions
75+
Args:
76+
u (numpy.ndarray): input, shape(pred_len, input_size)
77+
or shape(pop_size, pred_len, input_size)
78+
Returns:
79+
cost (numpy.ndarray): cost of input, shape(pred_len, input_size) or
80+
shape(pop_size, pred_len, input_size)
81+
"""
82+
return (u**2) * np.diag(CartPoleConfigModule.R)
83+
84+
@staticmethod
85+
def state_cost_fn(x, g_x):
86+
""" state cost function
87+
Args:
88+
x (numpy.ndarray): state, shape(pred_len, state_size)
89+
or shape(pop_size, pred_len, state_size)
90+
g_x (numpy.ndarray): goal state, shape(pred_len, state_size)
91+
or shape(pop_size, pred_len, state_size)
92+
Returns:
93+
cost (numpy.ndarray): cost of state, shape(pred_len, 1) or
94+
shape(pop_size, pred_len, 1)
95+
"""
96+
97+
if len(x.shape) > 2:
98+
return (6. * (x[:, :, 0]**2) \
99+
+ 12. * ((np.cos(x[:, :, 2]) + 1.)**2) \
100+
+ 0.1 * (x[:, :, 1]**2) \
101+
+ 0.1 * (x[:, :, 3]**2))[:, :, np.newaxis]
102+
103+
elif len(x.shape) > 1:
104+
return (6. * (x[:, 0]**2) \
105+
+ 12. * ((np.cos(x[:, 2]) + 1.)**2) \
106+
+ 0.1 * (x[:, 1]**2) \
107+
+ 0.1 * (x[:, 3]**2))[:, np.newaxis]
108+
109+
return 6. * (x[0]**2) \
110+
+ 12. * ((np.cos(x[2]) + 1.)**2) \
111+
+ 0.1 * (x[1]**2) \
112+
+ 0.1 * (x[3]**2)
113+
114+
@staticmethod
115+
def terminal_state_cost_fn(terminal_x, terminal_g_x):
116+
"""
117+
Args:
118+
terminal_x (numpy.ndarray): terminal state,
119+
shape(state_size, ) or shape(pop_size, state_size)
120+
terminal_g_x (numpy.ndarray): terminal goal state,
121+
shape(state_size, ) or shape(pop_size, state_size)
122+
Returns:
123+
cost (numpy.ndarray): cost of state, shape(pred_len, ) or
124+
shape(pop_size, pred_len)
125+
"""
126+
127+
if len(terminal_x.shape) > 1:
128+
return (6. * (terminal_x[:, 0]**2) \
129+
+ 12. * ((np.cos(terminal_x[:, 2]) + 1.)**2) \
130+
+ 0.1 * (terminal_x[:, 1]**2) \
131+
+ 0.1 * (terminal_x[:, 3]**2))[:, np.newaxis]
132+
133+
return 6. * (terminal_x[0]**2) \
134+
+ 12. * ((np.cos(terminal_x[2]) + 1.)**2) \
135+
+ 0.1 * (terminal_x[1]**2) \
136+
+ 0.1 * (terminal_x[3]**2)
137+
138+
@staticmethod
139+
def gradient_cost_fn_with_state(x, g_x, terminal=False):
140+
""" gradient of costs with respect to the state
141+
142+
Args:
143+
x (numpy.ndarray): state, shape(pred_len, state_size)
144+
g_x (numpy.ndarray): goal state, shape(pred_len, state_size)
145+
146+
Returns:
147+
l_x (numpy.ndarray): gradient of cost, shape(pred_len, state_size)
148+
or shape(1, state_size)
149+
"""
150+
if not terminal:
151+
return None
152+
153+
return None
154+
155+
@staticmethod
156+
def gradient_cost_fn_with_input(x, u):
157+
""" gradient of costs with respect to the input
158+
159+
Args:
160+
x (numpy.ndarray): state, shape(pred_len, state_size)
161+
u (numpy.ndarray): goal state, shape(pred_len, input_size)
162+
163+
Returns:
164+
l_u (numpy.ndarray): gradient of cost, shape(pred_len, input_size)
165+
"""
166+
return None
167+
168+
@staticmethod
169+
def hessian_cost_fn_with_state(x, g_x, terminal=False):
170+
""" hessian costs with respect to the state
171+
172+
Args:
173+
x (numpy.ndarray): state, shape(pred_len, state_size)
174+
g_x (numpy.ndarray): goal state, shape(pred_len, state_size)
175+
176+
Returns:
177+
l_xx (numpy.ndarray): gradient of cost,
178+
shape(pred_len, state_size, state_size) or
179+
shape(1, state_size, state_size) or
180+
"""
181+
if not terminal:
182+
(pred_len, _) = x.shape
183+
return None
184+
185+
return None
186+
187+
@staticmethod
188+
def hessian_cost_fn_with_input(x, u):
189+
""" hessian costs with respect to the input
190+
191+
Args:
192+
x (numpy.ndarray): state, shape(pred_len, state_size)
193+
u (numpy.ndarray): goal state, shape(pred_len, input_size)
194+
195+
Returns:
196+
l_uu (numpy.ndarray): gradient of cost,
197+
shape(pred_len, input_size, input_size)
198+
"""
199+
(pred_len, _) = u.shape
200+
201+
return None
202+
203+
@staticmethod
204+
def hessian_cost_fn_with_input_state(x, u):
205+
""" hessian costs with respect to the state and input
206+
207+
Args:
208+
x (numpy.ndarray): state, shape(pred_len, state_size)
209+
u (numpy.ndarray): goal state, shape(pred_len, input_size)
210+
211+
Returns:
212+
l_ux (numpy.ndarray): gradient of cost ,
213+
shape(pred_len, input_size, state_size)
214+
"""
215+
(_, state_size) = x.shape
216+
(pred_len, input_size) = u.shape
217+
218+
return np.zeros((pred_len, input_size, state_size))

0 commit comments

Comments
 (0)