Skip to content

Tanmays9/mcp

Repository files navigation

Generative AI Knowledge Assistant

A comprehensive AI assistant that uses Model Context Protocol (MCP) to integrate multiple data sources, enabling complex queries and context-aware answers.

Features

  • MCP Integration: Seamless integration with multiple data sources (files, databases, APIs)
  • AI-Powered Processing: LLM-powered summarization and content generation
  • Interactive Dashboard: React.js + Plotly/Dash visualization interface
  • Context-Aware Queries: Intelligent query processing with multi-source context
  • Real-time Analytics: User interaction metrics and query performance tracking

Project Structure

├── backend/                 # FastAPI backend
│   ├── api/                # API endpoints
│   ├── core/               # Core business logic
│   ├── models/             # Data models
│   └── services/           # Service layer
├── frontend/               # React.js dashboard
│   ├── src/
│   │   ├── components/     # React components
│   │   ├── pages/          # Dashboard pages
│   │   └── utils/          # Utility functions
├── mcp_server/             # MCP server implementation
│   ├── tools/              # MCP tools
│   └── integrations/       # Data source integrations
├── data/                   # Sample data and configurations
└── tests/                  # Test files

Quick Start

  1. Install dependencies:
pip install -r requirements.txt
  1. Set up environment variables:
cp .env.example .env
# Edit .env with your API keys and configurations
  1. Start the MCP server:
python mcp_server/main.py
  1. Start the backend API:
python backend/main.py
  1. Start the frontend dashboard:
cd frontend && npm start

Configuration

  • OpenAI API key for LLM functionality
  • Database connections for data sources
  • MCP server configurations
  • Dashboard customization options

API Documentation

Once running, visit http://localhost:8000/docs for interactive API documentation.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published