Skip to content
This repository has been archived by the owner on Jul 30, 2024. It is now read-only.

Commit

Permalink
initial commit
Browse files Browse the repository at this point in the history
  • Loading branch information
StevenClontz committed Jul 31, 2017
0 parents commit 3a287b9
Show file tree
Hide file tree
Showing 5 changed files with 319 additions and 0 deletions.
7 changes: 7 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
# LaTeX
*.aux
*.fdb_latexmk
*.fls
*.synctex.gz
*.log
*.out
4 changes: 4 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
# tbil-la

Source files and built PDFs for running a Team-Based Inquiry Learning
linear algebra course.
Binary file added course-notes.pdf
Binary file not shown.
272 changes: 272 additions & 0 deletions course-notes.tex
Original file line number Diff line number Diff line change
@@ -0,0 +1,272 @@
\documentclass{article}

\usepackage{tbil-la}

\usepackage[left=1in,right=1in,top=1in,bottom=1in]{geometry}




\begin{document}

\begin{readinessAssuranceOutcomes}
\item Solve a system of linear equations (including finding a basis of the solution space if it is homogeneous) by interpreting as an augmented matrix and row reducing \standardList{E1, E2, E3, E4}.
\item State the definition of linear independence, and determine if a set of vectors is linearly dependent or independent \standardList{V5}.
\item State the definition of a spanning set, and determine if a set of vectors spans a vector space or subspace \standardList{V6, V7}.
\item State the definition of a basis, and determine if a set of vectors is a basis \standardList{V8, V9}.
\end{readinessAssuranceOutcomes}

\begin{readinessAssuranceResources}
\item TODO
\end{readinessAssuranceResources}


\newpage
\begin{center}{\bf Readiness Assurance Test} \end{center}
\begin{enumerate}[1)]

\item Which of the following is a solution to the system of linear equations
\begin{align*}
x+3y-z &= 2\\
2x+8y+3z &=-1 \\
-x-y+9z &= -10
\end{align*}

\begin{multicols}{4}
\begin{enumerate}[(a)]
\item $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$
\item $\begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$
\item $\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$
\item $\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$
\end{enumerate}
\end{multicols}


\item Find a basis for the solution set of the following homogeneous system of linear equations
\begin{align*}
x+2y+-z-w &= 0 \\
-2x-4y+3z+5w &= 0
\end{align*}
\begin{multicols}{4}
\begin{enumerate}[(a)]
\item $\left\{ \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 3 \\ 1 \end{bmatrix} \right\}$
\item $\left\{ \begin{bmatrix} 2 \\ 2 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 3 \\ 0 \end{bmatrix} \right\}$
\item $\left\{ \begin{bmatrix} 2 \\ 1 \\ 3 \\ 1 \end{bmatrix} \right\}$
\item None of these are a basis.
\end{enumerate}
\end{multicols}


\item Determine which property applies to the set of vectors $$\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\} \subset \IR^3.$$
\begin{enumerate}[(a)]
\item It does not span and is linearly dependent
\item It does not span and is linearly independent
\item It spans but it is linearly dependent
\item It is a basis of $\IR^3$.
\end{enumerate}

\item Determine which property applies to the set of vectors $$\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} , \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix} \right\}\subset \IR^3.$$
\begin{enumerate}[(a)]
\item It does not span and is linearly dependent
\item It does not span and is linearly independent
\item It spans but it is linearly dependent
\item It is a basis of $\IR^3$.
\end{enumerate}

\item Determine which property applies to the set of vectors $$\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ 0 \\ -2 \end{bmatrix} , \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} , \begin{bmatrix} 3 \\ 3 \\ -3 \end{bmatrix}\right\}\subset \IR^3.$$
\begin{enumerate}[(a)]
\item It does not span and is linearly dependent
\item It does not span and is linearly independent
\item It spans but it is linearly dependent
\item It is a basis of $\IR^3$.
\end{enumerate}

\item Determine which property applies to the set of vectors $$\left\{ \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}, \begin{bmatrix} -3 \\ 1 \\ -2 \end{bmatrix} , \begin{bmatrix} 1 \\ 5 \\ -4 \end{bmatrix}\right\}\subset \IR^3.$$
\begin{enumerate}[(a)]
\item It does not span and is linearly dependent
\item It does not span and is linearly independent
\item It spans but it is linearly dependent
\item It is a basis of $\IR^3$.
\end{enumerate}

\item Find a basis for the subspace of $\IR^4$ spanned by the vectors ...

\item Suppose you know that every vector in $\IR^5$ can be written as a linear combination of the vectors $\{\vec{v}_1, \ldots, \vec{v}_n\}$. What can you conclude about $n$?
\begin{enumerate}[(a)]
\item $n \leq 5$
\item $n=5$
\item $n \geq 5$
\item $n$ could be any positive integer
\end{enumerate}

\item Suppose you know that every vector in $\IR^5$ can be written uniquely as a linear combination of the vectors $\{\vec{v}_1, \ldots, \vec{v}_n\}$. What can you conclude about $n$?
\begin{enumerate}[(a)]
\item $n \leq 5$
\item $n=5$
\item $n \geq 5$
\item $n$ could be any positive integer
\end{enumerate}

\item Suppose you know that every vector in $\IR^5$ can be written uniquely as a linear combination of the vectors $\{\vec{v}_1, \ldots, \vec{v}_n\}$. What can you conclude about the set $\{\vec{v}_1, \ldots, \vec{v}_n\}$?
\begin{enumerate}[(a)]
\item It does not span and is linearly dependent
\item It does not span and is linearly independent
\item It spans but it is linearly dependent
\item It is a basis of $\IR^3$.
\end{enumerate}

\end{enumerate}

\newpage

Day 1
\begin{app}
A {\bf linear transformation} is a map between vector spaces that preserves the vector space operations. More precisely, if $V$ and $W$ are vector spaces, a map $T:V\rightarrow W$ is called a linear transformation if
\begin{enumerate}
\item $T(\vec{v}+\vec{w}) = T(\vec{v})+T(\vec{w})$ for any $\vec{v},\vec{w} \in V$
\item $T(c\vec{v}) = cT(\vec{v})$ for any $c \in \IR$, $\vec{v} \in V$.
\end{enumerate}
In other words, a map is linear if one can do vector space operations before applying the map or after, and obtain the same answer.

$V$ is called the {\bf domain} of $T$ and $W$ is called the {\bf co-domain} of $T$.

\begin{enumerate}[1)]
\item Determine if each of the following maps are linear transformations
\begin{enumerate}[(a)]
\item $T_1 : \IR^2 \rightarrow \IR$ given by $T_1\left(\begin{bmatrix} a \\ b \end{bmatrix} \right) = \sqrt{a^2+b^2}$
\item $T_2 : \IR^3 \rightarrow \IR^2$ given by $T_2\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix} \right) = \begin{bmatrix} x-z \\ y \end{bmatrix}$
\item $T_3: \P_d \rightarrow \P_{d-1}$ given by $T_3(f(x)) = f^\prime(x)$.
\item $T_4: C(\IR) \rightarrow C(\IR)$ given by $T_4(f(x)) = f(-x)$
\item $T_5: \P \rightarrow \P$ given by $T_5(f(x)) = f(x)+x^2$
\end{enumerate}

\item Suppose $T: \IR^3 \rightarrow \IR^2$ is a linear transformation, and you know $T\left(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} 2 \\ 1 \end{bmatrix} $ and $T\left(\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} -3 \\ 2 \end{bmatrix} $. Compute each of the following:
\begin{enumerate}[(a)]
\item $T\left(\begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix}\right)$
\item $T\left(\begin{bmatrix} 0 \\ 0 \\ -2 \end{bmatrix}\right)$
\item $T\left(\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}\right)$
\item $T\left(\begin{bmatrix} -2 \\ 0 \\ 5 \end{bmatrix}\right)$
\end{enumerate}

\item Suppose $T: \IR^4 \rightarrow \IR^3$ is a linear transformation. What is the smallest number of vectors needed to determine $T$? In other words, what is the smallest number $n$ such that there are $\vec{v}_1,\ldots,\vec{v}_n \in \IR^4$ and given $T(\vec{v}_1), \ldots, T(\vec{v}_n)$ you can determine $T(\vec{w})$ for {\bf any} $\vec{w} \in \IR^2$?
\end{enumerate}

Fix an ordered basis for $V$. Since every vector can be written {\em uniquely} as a linear combination of basis vectors, a linear transformation $T:V \rightarrow W$ corresponds exactly to a choice of where each basis vector goes. For convenience, we can thus encode a linear transformation as a matrix, with one column for the image of each basis vector (in order).

\begin{enumerate}[1)]
\item Let $T: \IR^3 \rightarrow \IR^2$ be a linear transformation with
\begin{align*}
T\left(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right) &= \begin{bmatrix} 3 \\ 2\end{bmatrix} &
T\left(\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right) &= \begin{bmatrix} -1 \\ 4\end{bmatrix} &
T\left(\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right) &= \begin{bmatrix} 5 \\ 0\end{bmatrix}
\end{align*}
Write the matrix corresponding to this linear transformation with respect to the standard ordered basis.

\item Let $T: \IR^3 \rightarrow \IR^2$ be a linear transformation with
\begin{align*}
T\left(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right) &= \begin{bmatrix} 3 \\ 2\end{bmatrix} &
T\left(\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right) &= \begin{bmatrix} -1 \\ 4\end{bmatrix} &
T\left(\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right) &= \begin{bmatrix} 5 \\ 0\end{bmatrix}
\end{align*}
Write the matrix corresponding to this linear transformation with respect to the ordered basis $\left\{ \begin{bmatrix} 2 & 1 & 1 \end{bmatrix} , \begin{bmatrix} -1 & -1 & 3 \end{bmatrix} , \begin{bmatrix} 0 & 1 & 2 \end{bmatrix} \right\}$

\item Let $D: \P_3 \rightarrow \P_2$ be the derivative map (recall this is a linear transformation). Write the matrix corresponding to $D$ with respect to the ordered basis $\{1,x,x^2,x^3\}$.

\end{enumerate}
\end{app}

Day 2
\begin{app}
Let $T: V \rightarrow W$ be a linear transformation.
\begin{itemize}
\item $T$ is called {\em injective} or {\em one-to-one} if $T$ does not map two distinct values to the same place. More precisely, $T$ is injective if $T(\vec{v}) \neq T(\vec{w})$ whenever $\vec{v} \neq \vec{w}$.
\item $T$ is called {\em surjective} or {\em onto} if every element of $W$ is mapped to by an element of $V$. More precisely, for every $\vec{w} \in W$, there is some $v \in V$ with $T(\vec{v})=\vec{w}$.
\end{itemize}

\begin{enumerate}[1)]
\item Let $T: \IR^3 \rightarrow \IR^2$ be given by the matrix $\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$. Determine if $T$ is injective, surjective, both, or neither.
\item Let $T: \IR^2 \rightarrow \IR^3$ be given by the matrix $\begin{bmatrix} 1 & 0 &0 \\ 0 & 1 & 0 \end{bmatrix}$. Determine if $T$ is injective, surjective, both, or neither.
\end{enumerate}


We also have two important sets called the {\em kernel} of $T$ and the {\em image} of $T$.
\begin{align*}
\ker T &= \left\{ \vec{v} \in V\ \big|\ T(\vec{v})=0\right\} \\
\Im T &= \left\{ \vec{w} \in W\ \big|\ \text{there is some }v\in V \text{ with } T(\vec{v})=\vec{w}\right\}
\end{align*}

\begin{enumerate}[1)]
\item Let $T: \IR^3 \rightarrow \IR^2$ be given by the matrix $\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$ (for the standard basis). Find the kernel and image of $T$.
\item Let $T: \IR^2 \rightarrow \IR^3$ be given by the matrix $\begin{bmatrix} 1 & 0 &0 \\ 0 & 1 & 0 \end{bmatrix}$ (for the standard basis). Find the kernel and image of $T$.
\end{enumerate}


\begin{enumerate}[1)]
\item Describe surjective linear transformations in terms of the image.
\item Describe injective linear transformations in terms of the kernel.
\end{enumerate}

Let $T: \IR^3 \rightarrow \IR^2$ be the linear transformation given by the matrix $A=\begin{bmatrix} 3 & 4 & -1 \\ 1 & 2 & 1 \end{bmatrix}$ (for the standard basis).
\begin{enumerate}[1)]
\item Write a system of equations whose solution set is the kernel.
\item Compute $\RREF(A)$ and solve the system of equations.
\item Compute the kernel of $T$
\item Find a basis for the kernel of $T$
\end{enumerate}

Let $S: \IR^3 \rightarrow \IR^2$ be the linear transformation given by the matrix $B=\begin{bmatrix} 3 & 4 & 1 \\ 1 & 2 & 4 \\ 5 & 8 & 9 \end{bmatrix}$ (for the standard basis).
\begin{enumerate}[1)]
\item Write a system of equations whose solution set is the kernel.
\item Compute $\RREF(A)$ and solve the system of equations.
\item Compute the kernel of $T$
\item Find a basis for the kernel of $T$
\end{enumerate}

Let $T: \IR^3 \rightarrow \IR^3$ be the linear transformation given by the matrix $A=\begin{bmatrix} 3 & 4 & -1 \\ 1 & 2 & 1 \end{bmatrix}$ (for the standard basis).
\begin{enumerate}[1)]
\item Find a set of vectors that span the image of $T$
\item Find a basis for the image of $T$.
\end{enumerate}

Let $S: \IR^3 \rightarrow \IR^3$ be the linear transformation given by the matrix $B=\begin{bmatrix} 3 & 4 & 1 \\ 1 & 2 & 4 \\ 5 & 8 & 9 \end{bmatrix}$ (for the standard basis).
\begin{enumerate}[1)]
\item Find a set of vectors that span the image of $T$
\item Find a basis for the image of $T$.
\end{enumerate}

\end{app}


Day 3
\begin{app}
Let $T: \IR^n \rightarrow \IR^m$ be a linear map with matrix $A \in M_{m,n}$ (for the standard basis). Consider the following statements about $T$
\begin{enumerate}[(a)]
\item $T$ is injective
\item $T$ is not injective
\item $T$ is surjective
\item $T$ is not surjective
\item The system of linear equations given by the augmented matrix $\begin{bmatrix}[c|c]A & \vec{b} \end{bmatrix}$ has a solution for all $\vec{b} \in \IR^m$
\item The system of linear equations given by the augmented matrix $\begin{bmatrix}[c|c]A & \vec{b} \end{bmatrix}$ has a unique solution for all $\vec{b} \in \IR^m$
\item The system of linear equations given by the augmented matrix $\begin{bmatrix}[c|c] A & \vec{0} \end{bmatrix}$ has a non-trivial solution.
\item The columns of $A$ span $\IR^m$
\item The columns of $A$ are linearly independent
\item The columns of $A$ are a basis of $\IR^m$
\item Every column of $\RREF(A)$ is a pivot column
\item $\RREF(A)$ has a non-pivot column
\item $\RREF(A)$ has $n$ pivot columns
\end{enumerate}

\begin{enumerate}[1)]
\item Sort these statements into groups of equivalent statements.
\item Gallery walk--switch boards with a different team. If they have two things grouped together that you know are not equivalent, write a reason or counter-example on a sticky note.
\item Update your team's groupings based on feedback.
\item Repeat?
\item Can you add any statements to any groups?
\end{enumerate}
\end{app}





\end{document}
36 changes: 36 additions & 0 deletions tbil-la.sty
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
\usepackage{enumerate,amssymb,tikz,amsmath,amsthm,multicol,hyperref}

\newcommand{\IR}{\mathbb{R}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{{\rm Im\ }}
\theoremstyle{definition}
\newtheorem{definition}{Definition}
\newtheorem{example}{Example}
\newtheorem{app}{Application Activity}
\DeclareMathOperator{\RREF}{RREF}
\makeatletter
\renewcommand*\env@matrix[1][*\c@MaxMatrixCols c]{%
\hskip -\arraycolsep
\let\@ifnextchar\new@ifnextchar
\array{#1}}
\makeatother


\newenvironment{readinessAssuranceOutcomes}{
\section*{Readiness Assurance Outcomes}

Before beginning this module, each student should be able to...
\begin{itemize}
}{
\end{itemize}
}

\newcommand{\standardList}[1]{\textbf{(Standard(s) #1)}}

\newenvironment{readinessAssuranceResources}{
\subsection*{Readiness Assurance Resources}
The following resources will help you prepare for this module.
\begin{itemize}
}{
\end{itemize}
}

0 comments on commit 3a287b9

Please sign in to comment.