This repository has been archived by the owner on Jul 30, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 12
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit 3a287b9
Showing
5 changed files
with
319 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,7 @@ | ||
# LaTeX | ||
*.aux | ||
*.fdb_latexmk | ||
*.fls | ||
*.synctex.gz | ||
*.log | ||
*.out |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
# tbil-la | ||
|
||
Source files and built PDFs for running a Team-Based Inquiry Learning | ||
linear algebra course. |
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,272 @@ | ||
\documentclass{article} | ||
|
||
\usepackage{tbil-la} | ||
|
||
\usepackage[left=1in,right=1in,top=1in,bottom=1in]{geometry} | ||
|
||
|
||
|
||
|
||
\begin{document} | ||
|
||
\begin{readinessAssuranceOutcomes} | ||
\item Solve a system of linear equations (including finding a basis of the solution space if it is homogeneous) by interpreting as an augmented matrix and row reducing \standardList{E1, E2, E3, E4}. | ||
\item State the definition of linear independence, and determine if a set of vectors is linearly dependent or independent \standardList{V5}. | ||
\item State the definition of a spanning set, and determine if a set of vectors spans a vector space or subspace \standardList{V6, V7}. | ||
\item State the definition of a basis, and determine if a set of vectors is a basis \standardList{V8, V9}. | ||
\end{readinessAssuranceOutcomes} | ||
|
||
\begin{readinessAssuranceResources} | ||
\item TODO | ||
\end{readinessAssuranceResources} | ||
|
||
|
||
\newpage | ||
\begin{center}{\bf Readiness Assurance Test} \end{center} | ||
\begin{enumerate}[1)] | ||
|
||
\item Which of the following is a solution to the system of linear equations | ||
\begin{align*} | ||
x+3y-z &= 2\\ | ||
2x+8y+3z &=-1 \\ | ||
-x-y+9z &= -10 | ||
\end{align*} | ||
|
||
\begin{multicols}{4} | ||
\begin{enumerate}[(a)] | ||
\item $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ | ||
\item $\begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$ | ||
\item $\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ | ||
\item $\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$ | ||
\end{enumerate} | ||
\end{multicols} | ||
|
||
|
||
\item Find a basis for the solution set of the following homogeneous system of linear equations | ||
\begin{align*} | ||
x+2y+-z-w &= 0 \\ | ||
-2x-4y+3z+5w &= 0 | ||
\end{align*} | ||
\begin{multicols}{4} | ||
\begin{enumerate}[(a)] | ||
\item $\left\{ \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 3 \\ 1 \end{bmatrix} \right\}$ | ||
\item $\left\{ \begin{bmatrix} 2 \\ 2 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 3 \\ 0 \end{bmatrix} \right\}$ | ||
\item $\left\{ \begin{bmatrix} 2 \\ 1 \\ 3 \\ 1 \end{bmatrix} \right\}$ | ||
\item None of these are a basis. | ||
\end{enumerate} | ||
\end{multicols} | ||
|
||
|
||
\item Determine which property applies to the set of vectors $$\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\} \subset \IR^3.$$ | ||
\begin{enumerate}[(a)] | ||
\item It does not span and is linearly dependent | ||
\item It does not span and is linearly independent | ||
\item It spans but it is linearly dependent | ||
\item It is a basis of $\IR^3$. | ||
\end{enumerate} | ||
|
||
\item Determine which property applies to the set of vectors $$\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} , \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix} \right\}\subset \IR^3.$$ | ||
\begin{enumerate}[(a)] | ||
\item It does not span and is linearly dependent | ||
\item It does not span and is linearly independent | ||
\item It spans but it is linearly dependent | ||
\item It is a basis of $\IR^3$. | ||
\end{enumerate} | ||
|
||
\item Determine which property applies to the set of vectors $$\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ 0 \\ -2 \end{bmatrix} , \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} , \begin{bmatrix} 3 \\ 3 \\ -3 \end{bmatrix}\right\}\subset \IR^3.$$ | ||
\begin{enumerate}[(a)] | ||
\item It does not span and is linearly dependent | ||
\item It does not span and is linearly independent | ||
\item It spans but it is linearly dependent | ||
\item It is a basis of $\IR^3$. | ||
\end{enumerate} | ||
|
||
\item Determine which property applies to the set of vectors $$\left\{ \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}, \begin{bmatrix} -3 \\ 1 \\ -2 \end{bmatrix} , \begin{bmatrix} 1 \\ 5 \\ -4 \end{bmatrix}\right\}\subset \IR^3.$$ | ||
\begin{enumerate}[(a)] | ||
\item It does not span and is linearly dependent | ||
\item It does not span and is linearly independent | ||
\item It spans but it is linearly dependent | ||
\item It is a basis of $\IR^3$. | ||
\end{enumerate} | ||
|
||
\item Find a basis for the subspace of $\IR^4$ spanned by the vectors ... | ||
|
||
\item Suppose you know that every vector in $\IR^5$ can be written as a linear combination of the vectors $\{\vec{v}_1, \ldots, \vec{v}_n\}$. What can you conclude about $n$? | ||
\begin{enumerate}[(a)] | ||
\item $n \leq 5$ | ||
\item $n=5$ | ||
\item $n \geq 5$ | ||
\item $n$ could be any positive integer | ||
\end{enumerate} | ||
|
||
\item Suppose you know that every vector in $\IR^5$ can be written uniquely as a linear combination of the vectors $\{\vec{v}_1, \ldots, \vec{v}_n\}$. What can you conclude about $n$? | ||
\begin{enumerate}[(a)] | ||
\item $n \leq 5$ | ||
\item $n=5$ | ||
\item $n \geq 5$ | ||
\item $n$ could be any positive integer | ||
\end{enumerate} | ||
|
||
\item Suppose you know that every vector in $\IR^5$ can be written uniquely as a linear combination of the vectors $\{\vec{v}_1, \ldots, \vec{v}_n\}$. What can you conclude about the set $\{\vec{v}_1, \ldots, \vec{v}_n\}$? | ||
\begin{enumerate}[(a)] | ||
\item It does not span and is linearly dependent | ||
\item It does not span and is linearly independent | ||
\item It spans but it is linearly dependent | ||
\item It is a basis of $\IR^3$. | ||
\end{enumerate} | ||
|
||
\end{enumerate} | ||
|
||
\newpage | ||
|
||
Day 1 | ||
\begin{app} | ||
A {\bf linear transformation} is a map between vector spaces that preserves the vector space operations. More precisely, if $V$ and $W$ are vector spaces, a map $T:V\rightarrow W$ is called a linear transformation if | ||
\begin{enumerate} | ||
\item $T(\vec{v}+\vec{w}) = T(\vec{v})+T(\vec{w})$ for any $\vec{v},\vec{w} \in V$ | ||
\item $T(c\vec{v}) = cT(\vec{v})$ for any $c \in \IR$, $\vec{v} \in V$. | ||
\end{enumerate} | ||
In other words, a map is linear if one can do vector space operations before applying the map or after, and obtain the same answer. | ||
|
||
$V$ is called the {\bf domain} of $T$ and $W$ is called the {\bf co-domain} of $T$. | ||
|
||
\begin{enumerate}[1)] | ||
\item Determine if each of the following maps are linear transformations | ||
\begin{enumerate}[(a)] | ||
\item $T_1 : \IR^2 \rightarrow \IR$ given by $T_1\left(\begin{bmatrix} a \\ b \end{bmatrix} \right) = \sqrt{a^2+b^2}$ | ||
\item $T_2 : \IR^3 \rightarrow \IR^2$ given by $T_2\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix} \right) = \begin{bmatrix} x-z \\ y \end{bmatrix}$ | ||
\item $T_3: \P_d \rightarrow \P_{d-1}$ given by $T_3(f(x)) = f^\prime(x)$. | ||
\item $T_4: C(\IR) \rightarrow C(\IR)$ given by $T_4(f(x)) = f(-x)$ | ||
\item $T_5: \P \rightarrow \P$ given by $T_5(f(x)) = f(x)+x^2$ | ||
\end{enumerate} | ||
|
||
\item Suppose $T: \IR^3 \rightarrow \IR^2$ is a linear transformation, and you know $T\left(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} 2 \\ 1 \end{bmatrix} $ and $T\left(\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} -3 \\ 2 \end{bmatrix} $. Compute each of the following: | ||
\begin{enumerate}[(a)] | ||
\item $T\left(\begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix}\right)$ | ||
\item $T\left(\begin{bmatrix} 0 \\ 0 \\ -2 \end{bmatrix}\right)$ | ||
\item $T\left(\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}\right)$ | ||
\item $T\left(\begin{bmatrix} -2 \\ 0 \\ 5 \end{bmatrix}\right)$ | ||
\end{enumerate} | ||
|
||
\item Suppose $T: \IR^4 \rightarrow \IR^3$ is a linear transformation. What is the smallest number of vectors needed to determine $T$? In other words, what is the smallest number $n$ such that there are $\vec{v}_1,\ldots,\vec{v}_n \in \IR^4$ and given $T(\vec{v}_1), \ldots, T(\vec{v}_n)$ you can determine $T(\vec{w})$ for {\bf any} $\vec{w} \in \IR^2$? | ||
\end{enumerate} | ||
|
||
Fix an ordered basis for $V$. Since every vector can be written {\em uniquely} as a linear combination of basis vectors, a linear transformation $T:V \rightarrow W$ corresponds exactly to a choice of where each basis vector goes. For convenience, we can thus encode a linear transformation as a matrix, with one column for the image of each basis vector (in order). | ||
|
||
\begin{enumerate}[1)] | ||
\item Let $T: \IR^3 \rightarrow \IR^2$ be a linear transformation with | ||
\begin{align*} | ||
T\left(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right) &= \begin{bmatrix} 3 \\ 2\end{bmatrix} & | ||
T\left(\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right) &= \begin{bmatrix} -1 \\ 4\end{bmatrix} & | ||
T\left(\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right) &= \begin{bmatrix} 5 \\ 0\end{bmatrix} | ||
\end{align*} | ||
Write the matrix corresponding to this linear transformation with respect to the standard ordered basis. | ||
|
||
\item Let $T: \IR^3 \rightarrow \IR^2$ be a linear transformation with | ||
\begin{align*} | ||
T\left(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right) &= \begin{bmatrix} 3 \\ 2\end{bmatrix} & | ||
T\left(\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right) &= \begin{bmatrix} -1 \\ 4\end{bmatrix} & | ||
T\left(\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right) &= \begin{bmatrix} 5 \\ 0\end{bmatrix} | ||
\end{align*} | ||
Write the matrix corresponding to this linear transformation with respect to the ordered basis $\left\{ \begin{bmatrix} 2 & 1 & 1 \end{bmatrix} , \begin{bmatrix} -1 & -1 & 3 \end{bmatrix} , \begin{bmatrix} 0 & 1 & 2 \end{bmatrix} \right\}$ | ||
|
||
\item Let $D: \P_3 \rightarrow \P_2$ be the derivative map (recall this is a linear transformation). Write the matrix corresponding to $D$ with respect to the ordered basis $\{1,x,x^2,x^3\}$. | ||
|
||
\end{enumerate} | ||
\end{app} | ||
|
||
Day 2 | ||
\begin{app} | ||
Let $T: V \rightarrow W$ be a linear transformation. | ||
\begin{itemize} | ||
\item $T$ is called {\em injective} or {\em one-to-one} if $T$ does not map two distinct values to the same place. More precisely, $T$ is injective if $T(\vec{v}) \neq T(\vec{w})$ whenever $\vec{v} \neq \vec{w}$. | ||
\item $T$ is called {\em surjective} or {\em onto} if every element of $W$ is mapped to by an element of $V$. More precisely, for every $\vec{w} \in W$, there is some $v \in V$ with $T(\vec{v})=\vec{w}$. | ||
\end{itemize} | ||
|
||
\begin{enumerate}[1)] | ||
\item Let $T: \IR^3 \rightarrow \IR^2$ be given by the matrix $\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$. Determine if $T$ is injective, surjective, both, or neither. | ||
\item Let $T: \IR^2 \rightarrow \IR^3$ be given by the matrix $\begin{bmatrix} 1 & 0 &0 \\ 0 & 1 & 0 \end{bmatrix}$. Determine if $T$ is injective, surjective, both, or neither. | ||
\end{enumerate} | ||
|
||
|
||
We also have two important sets called the {\em kernel} of $T$ and the {\em image} of $T$. | ||
\begin{align*} | ||
\ker T &= \left\{ \vec{v} \in V\ \big|\ T(\vec{v})=0\right\} \\ | ||
\Im T &= \left\{ \vec{w} \in W\ \big|\ \text{there is some }v\in V \text{ with } T(\vec{v})=\vec{w}\right\} | ||
\end{align*} | ||
|
||
\begin{enumerate}[1)] | ||
\item Let $T: \IR^3 \rightarrow \IR^2$ be given by the matrix $\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$ (for the standard basis). Find the kernel and image of $T$. | ||
\item Let $T: \IR^2 \rightarrow \IR^3$ be given by the matrix $\begin{bmatrix} 1 & 0 &0 \\ 0 & 1 & 0 \end{bmatrix}$ (for the standard basis). Find the kernel and image of $T$. | ||
\end{enumerate} | ||
|
||
|
||
\begin{enumerate}[1)] | ||
\item Describe surjective linear transformations in terms of the image. | ||
\item Describe injective linear transformations in terms of the kernel. | ||
\end{enumerate} | ||
|
||
Let $T: \IR^3 \rightarrow \IR^2$ be the linear transformation given by the matrix $A=\begin{bmatrix} 3 & 4 & -1 \\ 1 & 2 & 1 \end{bmatrix}$ (for the standard basis). | ||
\begin{enumerate}[1)] | ||
\item Write a system of equations whose solution set is the kernel. | ||
\item Compute $\RREF(A)$ and solve the system of equations. | ||
\item Compute the kernel of $T$ | ||
\item Find a basis for the kernel of $T$ | ||
\end{enumerate} | ||
|
||
Let $S: \IR^3 \rightarrow \IR^2$ be the linear transformation given by the matrix $B=\begin{bmatrix} 3 & 4 & 1 \\ 1 & 2 & 4 \\ 5 & 8 & 9 \end{bmatrix}$ (for the standard basis). | ||
\begin{enumerate}[1)] | ||
\item Write a system of equations whose solution set is the kernel. | ||
\item Compute $\RREF(A)$ and solve the system of equations. | ||
\item Compute the kernel of $T$ | ||
\item Find a basis for the kernel of $T$ | ||
\end{enumerate} | ||
|
||
Let $T: \IR^3 \rightarrow \IR^3$ be the linear transformation given by the matrix $A=\begin{bmatrix} 3 & 4 & -1 \\ 1 & 2 & 1 \end{bmatrix}$ (for the standard basis). | ||
\begin{enumerate}[1)] | ||
\item Find a set of vectors that span the image of $T$ | ||
\item Find a basis for the image of $T$. | ||
\end{enumerate} | ||
|
||
Let $S: \IR^3 \rightarrow \IR^3$ be the linear transformation given by the matrix $B=\begin{bmatrix} 3 & 4 & 1 \\ 1 & 2 & 4 \\ 5 & 8 & 9 \end{bmatrix}$ (for the standard basis). | ||
\begin{enumerate}[1)] | ||
\item Find a set of vectors that span the image of $T$ | ||
\item Find a basis for the image of $T$. | ||
\end{enumerate} | ||
|
||
\end{app} | ||
|
||
|
||
Day 3 | ||
\begin{app} | ||
Let $T: \IR^n \rightarrow \IR^m$ be a linear map with matrix $A \in M_{m,n}$ (for the standard basis). Consider the following statements about $T$ | ||
\begin{enumerate}[(a)] | ||
\item $T$ is injective | ||
\item $T$ is not injective | ||
\item $T$ is surjective | ||
\item $T$ is not surjective | ||
\item The system of linear equations given by the augmented matrix $\begin{bmatrix}[c|c]A & \vec{b} \end{bmatrix}$ has a solution for all $\vec{b} \in \IR^m$ | ||
\item The system of linear equations given by the augmented matrix $\begin{bmatrix}[c|c]A & \vec{b} \end{bmatrix}$ has a unique solution for all $\vec{b} \in \IR^m$ | ||
\item The system of linear equations given by the augmented matrix $\begin{bmatrix}[c|c] A & \vec{0} \end{bmatrix}$ has a non-trivial solution. | ||
\item The columns of $A$ span $\IR^m$ | ||
\item The columns of $A$ are linearly independent | ||
\item The columns of $A$ are a basis of $\IR^m$ | ||
\item Every column of $\RREF(A)$ is a pivot column | ||
\item $\RREF(A)$ has a non-pivot column | ||
\item $\RREF(A)$ has $n$ pivot columns | ||
\end{enumerate} | ||
|
||
\begin{enumerate}[1)] | ||
\item Sort these statements into groups of equivalent statements. | ||
\item Gallery walk--switch boards with a different team. If they have two things grouped together that you know are not equivalent, write a reason or counter-example on a sticky note. | ||
\item Update your team's groupings based on feedback. | ||
\item Repeat? | ||
\item Can you add any statements to any groups? | ||
\end{enumerate} | ||
\end{app} | ||
|
||
|
||
|
||
|
||
|
||
\end{document} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,36 @@ | ||
\usepackage{enumerate,amssymb,tikz,amsmath,amsthm,multicol,hyperref} | ||
|
||
\newcommand{\IR}{\mathbb{R}} | ||
\renewcommand{\P}{\mathcal{P}} | ||
\renewcommand{\Im}{{\rm Im\ }} | ||
\theoremstyle{definition} | ||
\newtheorem{definition}{Definition} | ||
\newtheorem{example}{Example} | ||
\newtheorem{app}{Application Activity} | ||
\DeclareMathOperator{\RREF}{RREF} | ||
\makeatletter | ||
\renewcommand*\env@matrix[1][*\c@MaxMatrixCols c]{% | ||
\hskip -\arraycolsep | ||
\let\@ifnextchar\new@ifnextchar | ||
\array{#1}} | ||
\makeatother | ||
|
||
|
||
\newenvironment{readinessAssuranceOutcomes}{ | ||
\section*{Readiness Assurance Outcomes} | ||
|
||
Before beginning this module, each student should be able to... | ||
\begin{itemize} | ||
}{ | ||
\end{itemize} | ||
} | ||
|
||
\newcommand{\standardList}[1]{\textbf{(Standard(s) #1)}} | ||
|
||
\newenvironment{readinessAssuranceResources}{ | ||
\subsection*{Readiness Assurance Resources} | ||
The following resources will help you prepare for this module. | ||
\begin{itemize} | ||
}{ | ||
\end{itemize} | ||
} |