Skip to content

Commit ab65ac6

Browse files
authored
feat(compression): Add Burrows-Wheeler Transform (BWT) and Move-to-Front (MTF) (#6926)
* feat(compression): Add Burrows-Wheeler Transform (BWT) and Move-to-Front (MTF) * Resolve SpotBugs * fix code style
1 parent 48ba1ae commit ab65ac6

File tree

4 files changed

+600
-0
lines changed

4 files changed

+600
-0
lines changed
Lines changed: 220 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,220 @@
1+
package com.thealgorithms.compression;
2+
3+
import java.util.Arrays;
4+
import java.util.HashMap;
5+
import java.util.Map;
6+
7+
/**
8+
* Implementation of the Burrows-Wheeler Transform (BWT) and its inverse.
9+
* <p>
10+
* BWT is a reversible data transformation algorithm that rearranges a string into runs of
11+
* similar characters. While not a compression algorithm itself, it significantly improves
12+
* the compressibility of data for subsequent algorithms like Move-to-Front encoding and
13+
* Run-Length Encoding.
14+
* </p>
15+
*
16+
* <p>The transform works by:
17+
* <ol>
18+
* <li>Generating all rotations of the input string</li>
19+
* <li>Sorting these rotations lexicographically</li>
20+
* <li>Taking the last column of the sorted matrix as output</li>
21+
* <li>Recording the index of the original string in the sorted matrix</li>
22+
* </ol>
23+
* </p>
24+
*
25+
* <p><b>Important:</b> The input string should end with a unique end-of-string marker
26+
* (typically '$') that:
27+
* <ul>
28+
* <li>Does not appear anywhere else in the text</li>
29+
* <li>Is lexicographically smaller than all other characters</li>
30+
* <li>Ensures unique rotations and enables correct inverse transformation</li>
31+
* </ul>
32+
* Without this marker, the inverse transform may not correctly reconstruct the original string.
33+
* </p>
34+
*
35+
* <p><b>Time Complexity:</b>
36+
* <ul>
37+
* <li>Forward transform: O(n² log n) where n is the string length</li>
38+
* <li>Inverse transform: O(n) using the LF-mapping technique</li>
39+
* </ul>
40+
* </p>
41+
*
42+
* <p><b>Example:</b></p>
43+
* <pre>
44+
* Input: "banana$"
45+
* Output: BWTResult("annb$aa", 4)
46+
* - "annb$aa" is the transformed string (groups similar characters)
47+
* - 4 is the index of the original string in the sorted rotations
48+
* </pre>
49+
*
50+
* @see <a href="https://en.wikipedia.org/wiki/Burrows%E2%80%93Wheeler_transform">Burrows–Wheeler transform (Wikipedia)</a>
51+
*/
52+
public final class BurrowsWheelerTransform {
53+
54+
private BurrowsWheelerTransform() {
55+
}
56+
57+
/**
58+
* A container for the result of the forward BWT.
59+
* <p>
60+
* Contains the transformed string and the index of the original string
61+
* in the sorted rotations matrix, both of which are required for the
62+
* inverse transformation.
63+
* </p>
64+
*/
65+
public static class BWTResult {
66+
/** The transformed string (last column of the sorted rotation matrix) */
67+
public final String transformed;
68+
69+
/** The index of the original string in the sorted rotations matrix */
70+
public final int originalIndex;
71+
72+
/**
73+
* Constructs a BWTResult with the transformed string and original index.
74+
*
75+
* @param transformed the transformed string (L-column)
76+
* @param originalIndex the index of the original string in sorted rotations
77+
*/
78+
public BWTResult(String transformed, int originalIndex) {
79+
this.transformed = transformed;
80+
this.originalIndex = originalIndex;
81+
}
82+
83+
@Override
84+
public boolean equals(Object obj) {
85+
if (this == obj) {
86+
return true;
87+
}
88+
if (obj == null || getClass() != obj.getClass()) {
89+
return false;
90+
}
91+
BWTResult bwtResult = (BWTResult) obj;
92+
return originalIndex == bwtResult.originalIndex && transformed.equals(bwtResult.transformed);
93+
}
94+
95+
@Override
96+
public int hashCode() {
97+
return 31 * transformed.hashCode() + originalIndex;
98+
}
99+
100+
@Override
101+
public String toString() {
102+
return "BWTResult[transformed=" + transformed + ", originalIndex=" + originalIndex + "]";
103+
}
104+
}
105+
106+
/**
107+
* Performs the forward Burrows-Wheeler Transform on the input string.
108+
* <p>
109+
* The algorithm generates all cyclic rotations of the input, sorts them
110+
* lexicographically, and returns the last column of this sorted matrix
111+
* along with the position of the original string.
112+
* </p>
113+
*
114+
* <p><b>Note:</b> It is strongly recommended that the input string ends with
115+
* a unique end-of-string marker (e.g., '$') that is lexicographically smaller
116+
* than any other character in the string. This ensures correct inversion.</p>
117+
*
118+
* @param text the input string to transform; must not be {@code null}
119+
* @return a {@link BWTResult} object containing the transformed string (L-column)
120+
* and the index of the original string in the sorted rotations matrix;
121+
* returns {@code BWTResult("", -1)} for empty input
122+
* @throws NullPointerException if {@code text} is {@code null}
123+
*/
124+
public static BWTResult transform(String text) {
125+
if (text == null || text.isEmpty()) {
126+
return new BWTResult("", -1);
127+
}
128+
129+
int n = text.length();
130+
131+
// Generate all rotations of the input string
132+
String[] rotations = new String[n];
133+
for (int i = 0; i < n; i++) {
134+
rotations[i] = text.substring(i) + text.substring(0, i);
135+
}
136+
137+
// Sort rotations lexicographically
138+
Arrays.sort(rotations);
139+
int originalIndex = Arrays.binarySearch(rotations, text);
140+
StringBuilder lastColumn = new StringBuilder(n);
141+
for (int i = 0; i < n; i++) {
142+
lastColumn.append(rotations[i].charAt(n - 1));
143+
}
144+
145+
return new BWTResult(lastColumn.toString(), originalIndex);
146+
}
147+
148+
/**
149+
* Performs the inverse Burrows-Wheeler Transform using the LF-mapping technique.
150+
* <p>
151+
* The LF-mapping (Last-First mapping) is an efficient method to reconstruct
152+
* the original string from the BWT output without explicitly reconstructing
153+
* the entire sorted rotations matrix.
154+
* </p>
155+
*
156+
* <p>The algorithm works by:
157+
* <ol>
158+
* <li>Creating the first column by sorting the BWT string</li>
159+
* <li>Building a mapping from first column indices to last column indices</li>
160+
* <li>Following this mapping starting from the original index to reconstruct the string</li>
161+
* </ol>
162+
* </p>
163+
*
164+
* @param bwtString the transformed string (L-column) from the forward transform; must not be {@code null}
165+
* @param originalIndex the index of the original string row from the forward transform;
166+
* use -1 for empty strings
167+
* @return the original, untransformed string; returns empty string if input is empty or {@code originalIndex} is -1
168+
* @throws NullPointerException if {@code bwtString} is {@code null}
169+
* @throws IllegalArgumentException if {@code originalIndex} is out of valid range (except -1)
170+
*/
171+
public static String inverseTransform(String bwtString, int originalIndex) {
172+
if (bwtString == null || bwtString.isEmpty() || originalIndex == -1) {
173+
return "";
174+
}
175+
176+
int n = bwtString.length();
177+
if (originalIndex < 0 || originalIndex >= n) {
178+
throw new IllegalArgumentException("Original index must be between 0 and " + (n - 1) + ", got: " + originalIndex);
179+
}
180+
181+
char[] lastColumn = bwtString.toCharArray();
182+
char[] firstColumn = bwtString.toCharArray();
183+
Arrays.sort(firstColumn);
184+
185+
// Create the "next" array for LF-mapping.
186+
// next[i] stores the row index in the last column that corresponds to firstColumn[i]
187+
int[] next = new int[n];
188+
189+
// Track the count of each character seen so far in the last column
190+
Map<Character, Integer> countMap = new HashMap<>();
191+
192+
// Store the first occurrence index of each character in the first column
193+
Map<Character, Integer> firstOccurrence = new HashMap<>();
194+
195+
for (int i = 0; i < n; i++) {
196+
if (!firstOccurrence.containsKey(firstColumn[i])) {
197+
firstOccurrence.put(firstColumn[i], i);
198+
}
199+
}
200+
201+
// Build the LF-mapping
202+
for (int i = 0; i < n; i++) {
203+
char c = lastColumn[i];
204+
int count = countMap.getOrDefault(c, 0);
205+
int firstIndex = firstOccurrence.get(c);
206+
next[firstIndex + count] = i;
207+
countMap.put(c, count + 1);
208+
}
209+
210+
// Reconstruct the original string by following the LF-mapping
211+
StringBuilder originalString = new StringBuilder(n);
212+
int currentRow = originalIndex;
213+
for (int i = 0; i < n; i++) {
214+
originalString.append(firstColumn[currentRow]);
215+
currentRow = next[currentRow];
216+
}
217+
218+
return originalString.toString();
219+
}
220+
}
Lines changed: 164 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,164 @@
1+
package com.thealgorithms.compression;
2+
3+
import java.util.ArrayList;
4+
import java.util.Collection;
5+
import java.util.LinkedList;
6+
import java.util.List;
7+
import java.util.stream.Collectors;
8+
9+
/**
10+
* Implementation of the Move-to-Front (MTF) transform and its inverse.
11+
* <p>
12+
* MTF is a data transformation algorithm that encodes each symbol in the input
13+
* as its current position in a dynamically-maintained list, then moves that symbol
14+
* to the front of the list. This transformation is particularly effective when used
15+
* after the Burrows-Wheeler Transform (BWT), as BWT groups similar characters together.
16+
* </p>
17+
*
18+
* <p>The transform converts runs of repeated characters into sequences of small integers
19+
* (often zeros), which are highly compressible by subsequent entropy encoding algorithms
20+
* like Run-Length Encoding (RLE) or Huffman coding. This technique is used in the
21+
* bzip2 compression algorithm.
22+
* </p>
23+
*
24+
* <p><b>How it works:</b>
25+
* <ol>
26+
* <li>Maintain a list of symbols (the alphabet), initially in a fixed order</li>
27+
* <li>For each input symbol:
28+
* <ul>
29+
* <li>Output its current index in the list</li>
30+
* <li>Move that symbol to the front of the list</li>
31+
* </ul>
32+
* </li>
33+
* </ol>
34+
* This means frequently occurring symbols quickly move to the front and are encoded
35+
* with small indices (often 0), while rare symbols remain near the back.
36+
* </p>
37+
*
38+
* <p><b>Time Complexity:</b>
39+
* <ul>
40+
* <li>Forward transform: O(n × m) where n is input length and m is alphabet size</li>
41+
* <li>Inverse transform: O(n × m)</li>
42+
* </ul>
43+
* Note: Using {@link LinkedList} for O(1) insertions and O(m) search operations.
44+
* </p>
45+
*
46+
* <p><b>Example:</b></p>
47+
* <pre>
48+
* Input: "annb$aa"
49+
* Alphabet: "$abn" (initial order)
50+
* Output: [1, 3, 0, 3, 3, 3, 0]
51+
*
52+
* Step-by-step:
53+
* - 'a': index 1 in [$,a,b,n] → output 1, list becomes [a,$,b,n]
54+
* - 'n': index 3 in [a,$,b,n] → output 3, list becomes [n,a,$,b]
55+
* - 'n': index 0 in [n,a,$,b] → output 0, list stays [n,a,$,b]
56+
* - 'b': index 3 in [n,a,$,b] → output 3, list becomes [b,n,a,$]
57+
* - etc.
58+
*
59+
* Notice how repeated 'n' characters produce zeros after the first occurrence!
60+
* </pre>
61+
*
62+
* @see <a href="https://en.wikipedia.org/wiki/Move-to-front_transform">Move-to-front transform (Wikipedia)</a>
63+
*/
64+
public final class MoveToFront {
65+
66+
private MoveToFront() {
67+
}
68+
69+
/**
70+
* Performs the forward Move-to-Front transform.
71+
* <p>
72+
* Converts the input string into a list of integers, where each integer represents
73+
* the position of the corresponding character in a dynamically-maintained alphabet list.
74+
* </p>
75+
*
76+
* <p><b>Note:</b> All characters in the input text must exist in the provided alphabet,
77+
* otherwise an {@link IllegalArgumentException} is thrown. The alphabet should contain
78+
* all unique characters that may appear in the input.</p>
79+
*
80+
* @param text the input string to transform; if empty, returns an empty list
81+
* @param initialAlphabet a string containing the initial ordered set of symbols
82+
* (e.g., "$abn" or the full ASCII set); must not be empty
83+
* when {@code text} is non-empty
84+
* @return a list of integers representing the transformed data, where each integer
85+
* is the index of the corresponding input character in the current alphabet state
86+
* @throws IllegalArgumentException if {@code text} is non-empty and {@code initialAlphabet}
87+
* is {@code null} or empty
88+
* @throws IllegalArgumentException if any character in {@code text} is not found in
89+
* {@code initialAlphabet}
90+
*/
91+
public static List<Integer> transform(String text, String initialAlphabet) {
92+
if (text == null || text.isEmpty()) {
93+
return new ArrayList<>();
94+
}
95+
if (initialAlphabet == null || initialAlphabet.isEmpty()) {
96+
throw new IllegalArgumentException("Alphabet cannot be null or empty when text is not empty.");
97+
}
98+
99+
List<Integer> output = new ArrayList<>(text.length());
100+
101+
// Use LinkedList for O(1) add-to-front and O(n) remove operations
102+
// This is more efficient than ArrayList for the move-to-front pattern
103+
List<Character> alphabet = initialAlphabet.chars().mapToObj(c -> (char) c).collect(Collectors.toCollection(LinkedList::new));
104+
105+
for (char c : text.toCharArray()) {
106+
int index = alphabet.indexOf(c);
107+
if (index == -1) {
108+
throw new IllegalArgumentException("Symbol '" + c + "' not found in the initial alphabet.");
109+
}
110+
111+
output.add(index);
112+
113+
// Move the character to the front
114+
Character symbol = alphabet.remove(index);
115+
alphabet.addFirst(symbol);
116+
}
117+
return output;
118+
}
119+
120+
/**
121+
* Performs the inverse Move-to-Front transform.
122+
* <p>
123+
* Reconstructs the original string from the list of indices produced by the
124+
* forward transform. This requires the exact same initial alphabet that was
125+
* used in the forward transform.
126+
* </p>
127+
*
128+
* <p><b>Important:</b> The {@code initialAlphabet} parameter must be identical
129+
* to the one used in the forward transform, including character order, or the
130+
* output will be incorrect.</p>
131+
*
132+
* @param indices The list of integers from the forward transform.
133+
* @param initialAlphabet the exact same initial alphabet string used for the forward transform;
134+
* if {@code null} or empty, returns an empty string
135+
* @return the original, untransformed string
136+
* @throws IllegalArgumentException if any index in {@code indices} is negative or
137+
* exceeds the current alphabet size
138+
*/
139+
public static String inverseTransform(Collection<Integer> indices, String initialAlphabet) {
140+
if (indices == null || indices.isEmpty() || initialAlphabet == null || initialAlphabet.isEmpty()) {
141+
return "";
142+
}
143+
144+
StringBuilder output = new StringBuilder(indices.size());
145+
146+
// Use LinkedList for O(1) add-to-front and O(n) remove operations
147+
List<Character> alphabet = initialAlphabet.chars().mapToObj(c -> (char) c).collect(Collectors.toCollection(LinkedList::new));
148+
149+
for (int index : indices) {
150+
if (index < 0 || index >= alphabet.size()) {
151+
throw new IllegalArgumentException("Index " + index + " is out of bounds for the current alphabet of size " + alphabet.size() + ".");
152+
}
153+
154+
// Get the symbol at the index
155+
char symbol = alphabet.get(index);
156+
output.append(symbol);
157+
158+
// Move the symbol to the front (mirroring the forward transform)
159+
alphabet.remove(index);
160+
alphabet.addFirst(symbol);
161+
}
162+
return output.toString();
163+
}
164+
}

0 commit comments

Comments
 (0)