Skip to content

Tiledesk Module for Conversational AI. Tiledesk is an open source conversational platform alternative to Intercom, Zendesk, Drift, Tawk.to and Tidio for Customer Service and Conversational Marketing.

License

Notifications You must be signed in to change notification settings

Tiledesk/tiledesk-ai

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

63 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

tiledesk-ai

Tiledesk Module for AI

This module uses a simple Feed Forward Network implemented using PyTorch (more to come in the future) to understand the user intent.

Use with the command line

NOTE: recommended Python version >= 3.9

Install

We recommend to install a python3 virtual env and install tiledesk-ai on it.

pip install virtualenv
python3 -m venv tileai
source ./tileai/bin/activate

Create your working folder:

mkdir tiledesk-ai
cd tiledesk-ai

Now synchronize with the source repo:

git clone https://github.com/Tiledesk/tiledesk-ai.git
cd tiledesk-ai
pip install -r requirements.txt

Now you can choose between two alternatives.

PRODUCTION MODE

If you are not interested in customize the code to improve/modify the module you can just use the production command:

pip install .

DEVELOPMENT MODE

For developement (if you want to modify the source code), use:

pip install -e .

This command will install the in-place the program. You can edit the script files and test them from the command line.

Train

Use the ./domain/nlu.json file to setup all intents train in your project.

nlu.json example

{
  "configuration": {
    "pipeline": ["auto"]
  },
  "nlu": [
    {	
      "intent":"hello_intent",
      "examples":["Hi","Hello"]
    },
    {	
      "intent":"goodbye_intent",
      "examples":["goodbye","bye","good night"]
    }
  ]
}

Actually configuration parameter only takes this settings:

"configuration": {
  "pipeline": "auto|embeddingwbag|feedforward|lstm|bert"
}

To train the model use the tileai command.

tileai command synthax:

> tileai train [-f nlu_filepath] [-o model_file_path]

nlu_filepath defaults to local /domain/nlu.json file.

Example:

tileai train -f domain/nlu.json -o models/my_trained_model

Query

> tileai query [-m model path] -t "question"

Query example:

> tileai query -m models/my_trained_model -t "ciao"

HTTP server

Run the HTTP server

You can run the tiledesk-ai module as a web app, launching the HTTP server. Default HTTP server port is 6006. You can change the port using the -p port option.

> tileai run [-p port]

Query from HTTP server

To train your model from http server:

POST http://localhost:port/train
{
	"configuration": {
		"algo": "auto"
	},
	"nlu": [{	
      "intent":"hello_intent",
      "examples":["Hi","Hello", "..."]
	},

	]
}

To query your model

POST http://localhost:port/model/parse
{
"model":"models/<name of the model>",
  "text":"..."
}

APIs

TODO

About

Tiledesk Module for Conversational AI. Tiledesk is an open source conversational platform alternative to Intercom, Zendesk, Drift, Tawk.to and Tidio for Customer Service and Conversational Marketing.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages