Skip to content
master
Go to file
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 

README.md

Pose Flow

Official implementation of Pose Flow: Efficient Online Pose Tracking .

Results on PoseTrack Challenge validation set:

  1. Task2: Multi-Person Pose Estimation (mAP)
Method Head mAP Shoulder mAP Elbow mAP Wrist mAP Hip mAP Knee mAP Ankle mAP Total mAP
Detect-and-Track(FAIR) 67.5 70.2 62 51.7 60.7 58.7 49.8 60.6
AlphaPose 66.7 73.3 68.3 61.1 67.5 67.0 61.3 66.5
  1. Task3: Pose Tracking (MOTA)
Method Head MOTA Shoulder MOTA Elbow MOTA Wrist MOTA Hip MOTA Knee MOTA Ankle MOTA Total MOTA Total MOTP Speed(FPS)
Detect-and-Track(FAIR) 61.7 65.5 57.3 45.7 54.3 53.1 45.7 55.2 61.5 Unknown
PoseFlow(DeepMatch) 59.8 67.0 59.8 51.6 60.0 58.4 50.5 58.3 67.8 8
PoseFlow(OrbMatch) 59.0 66.8 60.0 51.8 59.4 58.4 50.3 58.0 62.2 24

Latest Features

  • Dec 2018: PoseFlow(General Version) released! Support ANY DATASET and pose tracking results visualization.
  • Oct 2018: Support generating correspondence files with ORB(OpenCV), 3X FASTER and no need to compile DeepMatching library.

Requirements

  • Python 2.7.13
  • OpenCV 3.4.2.16
  • OpenCV-contrib 3.4.2.16
  • tqdm 4.19.8

Installation

  1. Download PoseTrack Dataset from PoseTrack to AlphaPose/PoseFlow/posetrack_data/
  2. (Optional) Use DeepMatching to extract dense correspondences between adjcent frames in every video, please refer to DeepMatching Compile Error to compile DeepMatching correctly
pip install -r requirements.txt

cd deepmatching
make clean all
make
cd ..

For Any Datasets (General Version)

  1. Using AlphaPose to generate multi-person pose estimation results.
# pytorch version
python demo.py --indir ${image_dir}$ --outdir ${results_dir}$

# torch version
./run.sh --indir ${image_dir}$ --outdir ${results_dir}$
  1. Run pose tracking
# pytorch version
python tracker-general.py --imgdir ${image_dir}$ 
                          --in_json ${results_dir}$/alphapose-results.json 
                          --out_json ${results_dir}$/alphapose-results-forvis-tracked.json
                          --visdir ${render_dir}$

# torch version
python tracker-general.py --imgdir ${image_dir}$ 
                          --in_json ${results_dir}$/POSE/alpha-pose-results-forvis.json 
                          --out_json ${results_dir}$/POSE/alpha-pose-results-forvis-tracked.json
                          --visdir ${render_dir}$

For PoseTrack Dataset Evaluation (Paper Baseline)

  1. Using AlphaPose to generate multi-person pose estimation results on videos with format like alpha-pose-results-sample.json.
  2. Using DeepMatching/ORB to generate correspondence files.
# Generate correspondences by DeepMatching
# (More Robust but Slower)
python matching.py --orb=0 

or

# Generate correspondences by Orb
# (Faster but Less Robust)
python matching.py --orb=1
  1. Run pose tracking
python tracker-baseline.py --dataset=val/test  --orb=1/0
  1. Evaluation

Original poseval has some instructions on how to convert annotation files from MAT to JSON.

Evaluate pose tracking results on validation dataset:

git clone https://github.com/leonid-pishchulin/poseval.git --recursive
cd poseval/py && export PYTHONPATH=$PWD/../py-motmetrics:$PYTHONPATH
cd ../../
python poseval/py/evaluate.py --groundTruth=./posetrack_data/annotations/val \
                    --predictions=./${track_result_dir}/ \
                    --evalPoseTracking --evalPoseEstimation

Citation

Please cite these papers in your publications if it helps your research:

@inproceedings{xiu2018poseflow,
  author = {Xiu, Yuliang and Li, Jiefeng and Wang, Haoyu and Fang, Yinghong and Lu, Cewu},
  title = {{Pose Flow}: Efficient Online Pose Tracking},
  booktitle={BMVC},
  year = {2018}
}
You can’t perform that action at this time.