Solution of Kaggle's Fashion MNIST Image classification
Layer | Description | Shape |
---|---|---|
ConvA | 32, 5x5, 1x1 | (Batch_size, 28, 28, 1) |
BatchNormA | (Batch_size, 28, 28, 32) | |
MaxPoolA | 2x2, 2x2 | (Batch_size, 28, 28, 32) |
ConvB | 64, 5x5, 1x1 | (Batch_size, 14, 14, 32) |
BatchNormB | (Batch_size, 14, 14, 64) | |
MaxPoolB | 2x2, 2x2 | (Batch_size, 14, 14, 64) |
Fullyconnc | 1024 | (Batch_size, 3136) |
Softmax | 10 | (Batch_size, 10) |
python train_softmax_clean.py
--train_csv ./fashionmnist/training2.csv
--batch_size 100
--buffer_size 15000
--lr 0.0001
--log_dir ./log
--model_dir ./model
--nrof_epochs 5
- Add Summaries and Plots
- Save checkpoint
- Add validation loss and accuracy
- Export Model pb
- Early Stopping
- Add image summary of activation maps