Skip to content

ad349/fashionmnist

Repository files navigation

fashionmnist

Solution of Kaggle's Fashion MNIST Image classification

Layer Description Shape
ConvA 32, 5x5, 1x1 (Batch_size, 28, 28, 1)
BatchNormA (Batch_size, 28, 28, 32)
MaxPoolA 2x2, 2x2 (Batch_size, 28, 28, 32)
ConvB 64, 5x5, 1x1 (Batch_size, 14, 14, 32)
BatchNormB (Batch_size, 14, 14, 64)
MaxPoolB 2x2, 2x2 (Batch_size, 14, 14, 64)
Fullyconnc 1024 (Batch_size, 3136)
Softmax 10 (Batch_size, 10)

python train_softmax_clean.py
--train_csv ./fashionmnist/training2.csv
--batch_size 100
--buffer_size 15000
--lr 0.0001
--log_dir ./log
--model_dir ./model
--nrof_epochs 5

To Do

  • Add Summaries and Plots
  • Save checkpoint
  • Add validation loss and accuracy
  • Export Model pb
  • Early Stopping
  • Add image summary of activation maps