-
Notifications
You must be signed in to change notification settings - Fork 257
[ new ] notions of finiteness #2017
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Closed
Closed
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,237 @@ | ||
------------------------------------------------------------------------ | ||
-- The Agda standard library | ||
-- | ||
-- Notions of finiteness for setoids | ||
------------------------------------------------------------------------ | ||
|
||
{-# OPTIONS --safe --cubical-compatible #-} | ||
|
||
module Finite where | ||
|
||
open import Data.Fin.Base using (Fin) | ||
open import Data.Nat.Base using (ℕ) | ||
open import Data.Product.Base as × | ||
open import Data.Sum.Base as ⊎ using (_⊎_; inj₁; inj₂) | ||
open import Data.Unit using (⊤; tt) | ||
open import Function | ||
open import Level renaming (suc to lsuc) | ||
open import Relation.Binary using (Rel; Setoid; IsEquivalence) | ||
import Relation.Binary.Reasoning.Setoid as SetR | ||
import Relation.Binary.Construct.On as On | ||
open import Relation.Binary.PropositionalEquality as ≡ using (_≡_) | ||
|
||
private | ||
variable | ||
c ℓ c′ ℓ′ : Level | ||
|
||
Ω : ∀ p → Setoid (lsuc p) p | ||
Ω p = record | ||
{ Carrier = Set p | ||
; _≈_ = λ P Q → (P → Q) × (Q → P) | ||
; isEquivalence = record | ||
{ refl = id , id | ||
; sym = swap | ||
; trans = λ (f , g) (f′ , g′) → f′ ∘ f , g ∘ g′ | ||
} | ||
} | ||
|
||
Subset : Setoid c ℓ → (p : Level) → Set (c ⊔ ℓ ⊔ lsuc p) | ||
Subset X p = Func X (Ω p) | ||
|
||
FullSubset : {X : Setoid c ℓ} → Subset X 0ℓ | ||
FullSubset = record { to = λ _ → ⊤ } | ||
|
||
record EquivalenceRelation (X : Setoid c ℓ) r : Set (c ⊔ ℓ ⊔ lsuc r) where | ||
infix 4 _∼_ | ||
open Setoid X | ||
field | ||
_∼_ : Rel Carrier r | ||
∼-resp-≈ : ∀ {x x′ y y′} → x ≈ x′ → y ≈ y′ → x ∼ y → x′ ∼ y′ | ||
∼-isEquivalence : IsEquivalence _∼_ | ||
|
||
open IsEquivalence ∼-isEquivalence public renaming | ||
( refl to ∼-refl | ||
; trans to ∼-trans | ||
; sym to ∼-sym | ||
; reflexive to ∼-reflexive | ||
; isPartialEquivalence to ∼-isPartialEquivalence | ||
) | ||
|
||
≈⇒∼ : ∀ {x y} → x ≈ y → x ∼ y | ||
≈⇒∼ q = ∼-resp-≈ refl q ∼-refl | ||
|
||
_⁻¹[_] : ∀ {p} {X : Setoid c ℓ} {Y : Setoid c′ ℓ′} → | ||
Func X Y → Subset Y p → Setoid (c ⊔ p) ℓ | ||
_⁻¹[_] {X = X} f S = | ||
On.setoid {B = Σ[ x ∈ X.Carrier ] S.to (f.to x)} X proj₁ | ||
where | ||
module X = Setoid X | ||
module f = Func f | ||
module S = Func S | ||
|
||
_[_] : ∀ {p} {X : Setoid c ℓ} {Y : Setoid c′ ℓ′} → | ||
Func X Y → Subset X p → Setoid (c ⊔ p) ℓ′ | ||
_[_] {X = X} {Y} f S = | ||
On.setoid {B = Σ[ x ∈ X.Carrier ] S.to x} Y (f.to ∘ proj₁) | ||
where | ||
module X = Setoid X | ||
module f = Func f | ||
module S = Func S | ||
|
||
↣⇒⊆ : ∀ {X : Setoid c ℓ} {Y : Setoid c′ ℓ′} → Injection Y X → Subset X (c′ ⊔ ℓ) | ||
↣⇒⊆ {X = X} {Y} m = record | ||
{ to = λ x → ∃ \ y → to y X.≈ x | ||
; cong = λ p → | ||
(λ (y , q) → y , X.trans q p) , (λ (y , q) → y , X.trans q (X.sym p)) | ||
} | ||
where | ||
module X = Setoid X | ||
module Y = Setoid Y | ||
open Injection m | ||
|
||
_/_ : ∀ {r} (X : Setoid c ℓ) → EquivalenceRelation X r → Setoid c r | ||
X / R = record | ||
{ Carrier = Carrier | ||
; _≈_ = _∼_ | ||
; isEquivalence = ∼-isEquivalence | ||
} | ||
where | ||
open Setoid X | ||
open EquivalenceRelation R | ||
|
||
include-/ : ∀ {r} {X : Setoid c ℓ} (R : EquivalenceRelation X r) → | ||
Surjection X (X / R) | ||
include-/ {X = X} R = record | ||
{ to = id | ||
; cong = ≈⇒∼ | ||
; surjective = λ y → y , ∼-refl | ||
} | ||
where | ||
open Setoid X | ||
open EquivalenceRelation R | ||
|
||
record StrictlyFinite (X : Setoid c ℓ) : Set (c ⊔ ℓ) where | ||
field | ||
size : ℕ | ||
inv : Inverse X (≡.setoid (Fin size)) | ||
|
||
record Subfinite (X : Setoid c ℓ) : Set (c ⊔ ℓ) where | ||
field | ||
size : ℕ | ||
inj : Injection X (≡.setoid (Fin size)) | ||
|
||
record FinitelyEnumerable (X : Setoid c ℓ) : Set (c ⊔ ℓ) where | ||
field | ||
size : ℕ | ||
srj : Surjection (≡.setoid (Fin size)) X | ||
|
||
record SubFinitelyEnumerable (X : Setoid c ℓ) c′ ℓ′ | ||
: Set (c ⊔ ℓ ⊔ lsuc (c′ ⊔ ℓ′)) where | ||
field | ||
Apex : Setoid c′ ℓ′ | ||
finitelyEnumerable : FinitelyEnumerable Apex | ||
inj : Injection X Apex | ||
|
||
open FinitelyEnumerable finitelyEnumerable public | ||
|
||
record SubfinitelyEnumerable (X : Setoid c ℓ) c′ ℓ′ | ||
: Set (c ⊔ ℓ ⊔ lsuc (c′ ⊔ ℓ′)) where | ||
field | ||
Apex : Setoid c′ ℓ′ | ||
subfinite : Subfinite Apex | ||
srj : Surjection Apex X | ||
|
||
open Subfinite subfinite public | ||
|
||
lemma→ : {X : Setoid c ℓ} → | ||
SubFinitelyEnumerable X c′ ℓ′ → SubfinitelyEnumerable X (c ⊔ ℓ′) 0ℓ | ||
lemma→ {X = X} sfe = record | ||
{ Apex = e.function ⁻¹[ ↣⇒⊆ inj ] | ||
; subfinite = record | ||
{ size = size | ||
; inj = record | ||
{ to = proj₁ | ||
; cong = id | ||
; injective = id | ||
} | ||
} | ||
; srj = record | ||
{ to = λ (i , x , q) → x | ||
; cong = λ {(i , x , q)} {(i′ , x′ , q′)} p → | ||
let open SetR Apex in m.injective $ begin | ||
m.to x ≈⟨ q ⟩ | ||
e.to i ≡⟨ ≡.cong e.to p ⟩ | ||
e.to i′ ≈˘⟨ q′ ⟩ | ||
m.to x′ ∎ | ||
; surjective = λ x → | ||
(e.to⁻ (m.to x) , x , A.sym (e.surjective (m.to x) .proj₂)) , X.refl | ||
} | ||
} | ||
where | ||
-- X --m--> Apex <--e-- Fin size | ||
open SubFinitelyEnumerable sfe | ||
module X = Setoid X | ||
module A = Setoid Apex | ||
module m = Injection inj | ||
module e = Surjection srj | ||
|
||
lemma← : {X : Setoid c ℓ} → | ||
SubfinitelyEnumerable X c′ ℓ′ → SubFinitelyEnumerable X 0ℓ (ℓ ⊔ c′) | ||
lemma← {X = X} se = record | ||
{ Apex = ≡.setoid (Fin size) / R | ||
; finitelyEnumerable = record | ||
{ size = size | ||
; srj = include-/ R | ||
} | ||
; inj = record | ||
{ to = λ x → m.to (e.to⁻ x) | ||
; cong = λ {x y} q → let open SetR X in | ||
inj₂ ((e.to⁻ x , e.to⁻ y) , ≡.refl , ≡.refl , (begin | ||
e.to (e.to⁻ x) ≈⟨ e.surjective x .proj₂ ⟩ | ||
x ≈⟨ q ⟩ | ||
y ≈˘⟨ e.surjective y .proj₂ ⟩ | ||
e.to (e.to⁻ y) ∎)) | ||
; injective = λ {x y} → λ where | ||
(inj₁ q) → let open SetR X in begin | ||
x ≈˘⟨ e.surjective x .proj₂ ⟩ | ||
e.to (e.to⁻ x) ≈⟨ e.cong (m.injective q) ⟩ | ||
e.to (e.to⁻ y) ≈⟨ e.surjective y .proj₂ ⟩ | ||
y ∎ | ||
(inj₂ ((f , g) , iq , jq , q)) → let open SetR X in begin | ||
x ≈˘⟨ e.surjective x .proj₂ ⟩ | ||
e.to (e.to⁻ x) ≈˘⟨ e.cong (m.injective iq) ⟩ | ||
e.to f ≈⟨ q ⟩ | ||
e.to g ≈⟨ e.cong (m.injective jq) ⟩ | ||
e.to (e.to⁻ y) ≈⟨ e.surjective y .proj₂ ⟩ | ||
y ∎ | ||
} | ||
} | ||
where | ||
-- X <--e-- Apex --m--> Fin size | ||
open SubfinitelyEnumerable se | ||
module X = Setoid X | ||
module A = Setoid Apex | ||
module m = Injection inj | ||
module e = Surjection srj | ||
|
||
R : EquivalenceRelation (≡.setoid (Fin size)) _ | ||
R = record | ||
{ _∼_ = λ i j → i ≡ j ⊎ | ||
∃ \ ((f , g) : A.Carrier × A.Carrier) → | ||
m.to f ≡ i × m.to g ≡ j × e.to f X.≈ e.to g | ||
; ∼-resp-≈ = λ { ≡.refl ≡.refl → id } | ||
; ∼-isEquivalence = record | ||
{ refl = inj₁ ≡.refl | ||
; sym = ⊎.map ≡.sym | ||
λ ((f , g) , iq , jq , q) → (g , f) , jq , iq , X.sym q | ||
; trans = λ where | ||
(inj₁ ≡.refl) q → q | ||
(inj₂ p) (inj₁ ≡.refl) → inj₂ p | ||
(inj₂ ((f , g) , ip , jp , p)) (inj₂ ((f′ , g′) , iq , jq , q)) → | ||
inj₂ ((f , g′) , ip , jq , let open SetR X in begin | ||
e.to f ≈⟨ p ⟩ | ||
e.to g ≈⟨ e.cong (m.injective (≡.trans jp (≡.sym iq))) ⟩ | ||
e.to f′ ≈⟨ q ⟩ | ||
e.to g′ ∎) | ||
} | ||
} |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This is a very big change (important name, etc). I would not want to try to sneak this in to this PR.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Yeah, I'd be happy to have a separate PR for this. It seemed like a bug-fix, given that all of the surrounding records have a similar definition.