Skip to content

binaryacademy/tf-pose-estimation

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

tf-pose-estimation

Openpose的tensorflow实现版本。

  • 关注我们微信公众号,了解更多

  • 加我们winter老师账号进群学习

搭建运行环境

依赖库

第一步我们需要将以下的依赖库安装起来,这是本教程实现中必不可缺的主要依赖。

  • python3
  • tensorflow 1.4.1+
  • opencv3, protobuf, python3-tk
  • slidingwindow

安装


  • window10
git clone git@github.com:yinyuecheng1/tf-pose-estimation.git
git clone https://github.com/pdollar/coco.git

安装python3

cd coco/PythonAPI
# install pycocotools locally
python setup.py build_ext --inplace

# install pycocotools to the Python site-packages
python setup.py build_ext install

如果出错参考这篇 :https://www.jianshu.com/p/de455d653301

$ cd tf-openpose
$ pip install -r requirements.txt

下载swig :https://sourceforge.net/projects/swig/

然后swig.exe放到环境变量PATH下面

$ cd tf_pose/pafprocess
$ swig -python -c++ pafprocess.i && python3 setup.py build_ext --inplace

  • mac/linux

将github的项目克隆到本地,进入到tf—pose目录下,有一个requirements.txt文件,这个文本文件中写好了所有需要的第三方库,比如numpy等, 使用pip命令,可以一次性将这些第三方库安装好。

$ git clone git@github.com:yinyuecheng1/tf-pose-estimation.git
$ cd tf-openpose
$ pip3 install -r requirements.txt

编译第三方库,这里涉及到用swig来编译C++的源码,如果你使用windows系统,那么需要再安装好visual studio 2015和swig,并且配置好环境变量参数,swig只要简单的将swig.exe添加到系统环境变量中。linux系统下,使用会很方便,直接编译即可。

$ cd tf_pose/pafprocess
$ swig -python -c++ pafprocess.i && python3 setup.py build_ext --inplace

Demo

视频测试

使用方法:我们直接跳过模型训练这一步,直接使用训练好的模型进行测试,run_video.py会读入视频的内容,进行姿态识别之后,再将结果写入新的视频中。 使用方法很简单,运行如下命令即可。

$ python3 run_video.py  --video '../cai.mp4'

OpenPose

[1] https://github.com/CMU-Perceptual-Computing-Lab/openpose

[2] Training Codes : https://github.com/ZheC/Realtime_Multi-Person_Pose_Estimation

[3] Custom Caffe by Openpose : https://github.com/CMU-Perceptual-Computing-Lab/caffe_train

[4] Keras Openpose : https://github.com/michalfaber/keras_Realtime_Multi-Person_Pose_Estimation

Lifting from the deep

[1] Arxiv Paper : https://arxiv.org/abs/1701.00295

[2] https://github.com/DenisTome/Lifting-from-the-Deep-release

Mobilenet

[1] Original Paper : https://arxiv.org/abs/1704.04861

[2] Pretrained model : https://github.com/tensorflow/models/blob/master/slim/nets/mobilenet_v1.md

Libraries

[1] Tensorpack : https://github.com/ppwwyyxx/tensorpack

Tensorflow Tips

[1] Freeze graph : https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/tools/freeze_graph.py

[2] Optimize graph : https://codelabs.developers.google.com/codelabs/tensorflow-for-poets-2

About

Deep Pose Estimation implemented using Tensorflow with Custom Architectures for fast inference.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 41.7%
  • C++ 37.1%
  • C 21.1%
  • Other 0.1%