-
Notifications
You must be signed in to change notification settings - Fork 780
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
118 additions
and
109 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,118 @@ | ||
""" | ||
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation, | ||
Atlanta, Georgia 30332-0415 | ||
All Rights Reserved | ||
See LICENSE for the license information | ||
Example comparing DoglegOptimizer with Levenberg-Marquardt. | ||
Author: Frank Dellaert | ||
""" | ||
# pylint: disable=no-member, invalid-name | ||
|
||
import math | ||
import argparse | ||
|
||
import gtsam | ||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
|
||
|
||
def run(args): | ||
"""Test Dogleg vs LM, inspired by issue #452.""" | ||
|
||
# print parameters | ||
print("num samples = {}, deltaInitial = {}".format( | ||
args.num_samples, args.delta)) | ||
|
||
# Ground truth solution | ||
T11 = gtsam.Pose2(0, 0, 0) | ||
T12 = gtsam.Pose2(1, 0, 0) | ||
T21 = gtsam.Pose2(0, 1, 0) | ||
T22 = gtsam.Pose2(1, 1, 0) | ||
|
||
# Factor graph | ||
graph = gtsam.NonlinearFactorGraph() | ||
|
||
# Priors | ||
prior = gtsam.noiseModel_Isotropic.Sigma(3, 1) | ||
graph.add(gtsam.PriorFactorPose2(11, T11, prior)) | ||
graph.add(gtsam.PriorFactorPose2(21, T21, prior)) | ||
|
||
# Odometry | ||
model = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.01, 0.01, 0.3])) | ||
graph.add(gtsam.BetweenFactorPose2(11, 12, T11.between(T12), model)) | ||
graph.add(gtsam.BetweenFactorPose2(21, 22, T21.between(T22), model)) | ||
|
||
# Range | ||
model_rho = gtsam.noiseModel_Isotropic.Sigma(1, 0.01) | ||
graph.add(gtsam.RangeFactorPose2(12, 22, 1.0, model_rho)) | ||
|
||
params = gtsam.DoglegParams() | ||
params.setDeltaInitial(args.delta) # default is 10 | ||
|
||
# Add progressively more noise to ground truth | ||
sigmas = [0.01, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20] | ||
n = len(sigmas) | ||
p_dl, s_dl, p_lm, s_lm = [0]*n, [0]*n, [0]*n, [0]*n | ||
for i, sigma in enumerate(sigmas): | ||
dl_fails, lm_fails = 0, 0 | ||
# Attempt num_samples optimizations for both DL and LM | ||
for _attempt in range(args.num_samples): | ||
initial = gtsam.Values() | ||
initial.insert(11, T11.retract(np.random.normal(0, sigma, 3))) | ||
initial.insert(12, T12.retract(np.random.normal(0, sigma, 3))) | ||
initial.insert(21, T21.retract(np.random.normal(0, sigma, 3))) | ||
initial.insert(22, T22.retract(np.random.normal(0, sigma, 3))) | ||
|
||
# Run dogleg optimizer | ||
dl = gtsam.DoglegOptimizer(graph, initial, params) | ||
result = dl.optimize() | ||
dl_fails += graph.error(result) > 1e-9 | ||
|
||
# Run | ||
lm = gtsam.LevenbergMarquardtOptimizer(graph, initial) | ||
result = lm.optimize() | ||
lm_fails += graph.error(result) > 1e-9 | ||
|
||
# Calculate Bayes estimate of success probability | ||
# using a beta prior of alpha=0.5, beta=0.5 | ||
alpha, beta = 0.5, 0.5 | ||
v = args.num_samples+alpha+beta | ||
p_dl[i] = (args.num_samples-dl_fails+alpha)/v | ||
p_lm[i] = (args.num_samples-lm_fails+alpha)/v | ||
|
||
def stddev(p): | ||
"""Calculate standard deviation.""" | ||
return math.sqrt(p*(1-p)/(1+v)) | ||
|
||
s_dl[i] = stddev(p_dl[i]) | ||
s_lm[i] = stddev(p_lm[i]) | ||
|
||
fmt = "sigma= {}:\tDL success {:.2f}% +/- {:.2f}%, LM success {:.2f}% +/- {:.2f}%" | ||
print(fmt.format(sigma, | ||
100*p_dl[i], 100*s_dl[i], | ||
100*p_lm[i], 100*s_lm[i])) | ||
|
||
if args.plot: | ||
fig, ax = plt.subplots() | ||
dl_plot = plt.errorbar(sigmas, p_dl, yerr=s_dl, label="Dogleg") | ||
lm_plot = plt.errorbar(sigmas, p_lm, yerr=s_lm, label="LM") | ||
plt.title("Dogleg emprical success vs. LM") | ||
plt.legend(handles=[dl_plot, lm_plot]) | ||
ax.set_xlim(0, sigmas[-1]+1) | ||
ax.set_ylim(0, 1) | ||
plt.show() | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser( | ||
description="Compare Dogleg and LM success rates") | ||
parser.add_argument("-n", "--num_samples", type=int, default=1000, | ||
help="Number of samples for each sigma") | ||
parser.add_argument("-d", "--delta", type=float, default=10.0, | ||
help="Initial delta for dogleg") | ||
parser.add_argument("-p", "--plot", action="store_true", | ||
help="Flag to plot results") | ||
args = parser.parse_args() | ||
run(args) |
This file was deleted.
Oops, something went wrong.