Skip to content

Scripts, analysis code, input data, and intermediate files for response to Soni et al.

License

Notifications You must be signed in to change notification settings

chasewnelson/Soni-response

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Response to Soni et al.

Scripts, analysis code, input data, and intermediate files for response to Soni et al. 2024.

Citation

When using this repository, please refer to and cite:

Nelson CW, Poon LLM, Gu H. 2024. Reply to: Population genetic considerations regarding the interpretation of within-patient SARS-CoV-2 polymorphism data. Nature Communications, 15: 3239. DOI: 10.1038/s41467-024-46262-3

and this page:

https://github.com/chasewnelson/Soni-response

Description

DFE* and Flynn* SLiM scripts were downloaded from Soni et al..

Updated versions that print additional output (*_addOutput.slim) were saved with the following lines of Eidos code added:

// additional output
outputSample.genome1.output(filePath = getwd() + "/" + OUTPUTSTEM + "_100.out");
sampledIndividuals = sample(p1.individuals, 1000);
sampledIndividuals.genome1.output(filePath = getwd() + "/" + OUTPUTSTEM + "_1000.out");

Results in our response are based on the *_100.out data only, analogous to a uniform coverage of 100 effective sequencing reads, matching the method of Soni et al.

Each DFE* script (accessed 2023/06/16) was run with a weakly or strongly deleterious mutation background as follows:

# Weakly deleterious background with no beneficial mutations (Weak / -)
for i in $(seq 1 100); do slim -d GENOMESIZE=30000 -d MU=2.135e-6 -d INIT=1 -d K=1e5 -d REPRO=1 -d RUNTIME=168 -d R=5.5e-5 -d XI=0 -d BURSTN=100 -d "OUTPUTSTEM='results/DFE/DFE1_rep$i'" -d d_f0=0.1 -d d_f1=0.7 -d d_f2=0.1 -d d_f3=0.1 -d simID="$i" sc2_DFE_addOutput.slim > results/DFE/DFE1_rep${i}.log; done;

# Strongly deleterious background with no beneficial mutations (Strong / -)
for i in $(seq 1 100); do slim -d GENOMESIZE=30000 -d MU=2.135e-6 -d INIT=1 -d K=1e5 -d REPRO=1 -d RUNTIME=168 -d R=5.5e-5 -d XI=0 -d BURSTN=100 -d "OUTPUTSTEM='results/DFE/DFE2_rep$i'" -d d_f0=0.1 -d d_f1=0.1 -d d_f2=0.1 -d d_f3=0.7 -d simID="$i" sc2_DFE_addOutput.slim > results/DFE/DFE2_rep${i}.log; done;

# Weakly deleterious background with one beneficial mutation (Weak / +)
for i in $(seq 1 100); do slim -d GENOMESIZE=30000 -d MU=2.135e-6 -d INIT=1 -d K=1e5 -d REPRO=1 -d RUNTIME=168 -d R=5.5e-5 -d XI=0 -d BURSTN=100 -d "OUTPUTSTEM='results/DFE_beneficial/DFE1_rep$i'" -d d_f0=0.1 -d d_f1=0.7 -d d_f2=0.1 -d d_f3=0.1 -d simID="$i" sc2_DFE_beneficial_addOutput.slim > results/DFE_beneficial/DFE1_rep${i}.log; done;

# Strongly deleterious background with one beneficial mutation (Strong / +)
for i in $(seq 1 100); do slim -d GENOMESIZE=30000 -d MU=2.135e-6 -d INIT=1 -d K=1e5 -d REPRO=1 -d RUNTIME=168 -d R=5.5e-5 -d XI=0 -d BURSTN=100 -d "OUTPUTSTEM='results/DFE_beneficial/DFE2_rep$i'" -d d_f0=0.1 -d d_f1=0.1 -d d_f2=0.1 -d d_f3=0.7 -d simID="$i" sc2_DFE_beneficial_addOutput.slim > results/DFE_beneficial/DFE2_rep${i}.log; done;

Flynn* (accessed 2023/09/26) and Bloom scripts were run as follows (note that Bloom DFE specifications are hard-coded; see script):

# Flynn 1% beneficial
for i in $(seq 1 100); do slim -d GENOMESIZE=30000 -d MU=2.135e-6 -d INIT=1 -d K=1e3 -d REPRO=1 -d RUNTIME=168 -d R=5.5e-5 -d XI=0 -d BURSTN=100 -d "OUTPUTSTEM='results/Flynn1pct/Flynn1pct_rep$i'" -d d_f0=0.542 -d d_f1=0.112 -d d_f2=0.02 -d d_f3=0.326 -d d_fb=0.01 -d simID="$i" sc2_Flynn_etal_DFE_addOutput.slim > results/Flynn1pct/Flynn1pct_rep${i}.log; done;

# Flynn 10% beneficial
for i in $(seq 1 100); do slim -d GENOMESIZE=30000 -d MU=2.135e-6 -d INIT=1 -d K=1e3 -d REPRO=1 -d RUNTIME=168 -d R=5.5e-5 -d XI=0 -d BURSTN=100 -d "OUTPUTSTEM='results/Flynn10pct/Flynn10pct_rep$i'" -d d_f0=0.445 -d d_f1=0.112 -d d_f2=0.02 -d d_f3=0.326 -d d_fb=0.097 -d simID="$i" sc2_Flynn_etal_DFE_addOutput.slim > results/Flynn10pct/Flynn10pct_rep${i}.log; done;

# Bloom & Neher DFE
for i in $(seq 1 100); do slim -d GENOMESIZE=30000 -d MU=2.135e-6 -d INIT=1 -d K=1e3 -d REPRO=1 -d RUNTIME=168 -d R=5.5e-5 -d "OUTPUTSTEM='results/BloomDFE/BloomDFE_rep$i'" -d simID="$i" sc2_BloomDFE.slim > results/BloomDFE/BloomDFE_rep${i}.log; done;

For each simulation above, data corresponding to the Mutation and Genome blocks of SLiM output were extracted from the output files at the command line as follows (replacing 'DFE' with the appropriate simulation type):

# Mutation data
grep -E '^[0-9]' results/DFE/*.out > DFE_mutations.txt

# Genome data
grep -E '^p' results/DFE/*.out | sed -E 's/ A/\tA/g' | sed -E 's/A /A\t/g' | sed -E 's/ /,/g' > DFE_genomes.txt

All raw output, random seeds used, and intermediate data files are available in the /data/ directory of this repository. The file aamut_fitness_all.csv should be obtained from Bloom & Neher at the study GitHub link (public_2023-10-01 dataset; accessed 2023/10/05). Figure source data are provided as a Source Data file in the publication supplementary material.

All wrangling and analysis were performed manually in the R scripts Soni-response.R and Bloom-SC2-DFE.R, R version 4.2.2 (2022-10-31) and RStudio 2023.06.0+421, or R version 4.3.1 (2023-06-16) and RStudio 2023.06.1+524. R scripts are meant to be run interactively, line-by-line in RStudio. Figures were produced in R and annotated in PowerPoint. The following R libraries were used: base, boot, data.table, datasets, dplyr, forcats, ggplot2, graphics, grDevices, lubridate, MASS, methods, purrr, RColorBrewer, readr, scales, stats, stringr, tibble, tidyr, tidyverse, utils, zoo.

Contact

If you have questions about this repository, please click on the Issues tab at the top of this page and begin a new thread, so that others might benefit from the discussion.