You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
<aclass="reference internal" href="cla_utils.html#cla_utils.exercises3.householder" title="cla_utils.exercises3.householder"><codeclass="xref py py-func docutils literal notranslate"><spanclass="pre">cla_utils.exercises3.householder()</span></code></a> to use the <codeclass="docutils literal notranslate"><spanclass="pre">kmax</span></code>
689
689
argument. You may make use of the built-in triangular solve
triangular matrix algorithms briefly later). The test script
692
692
<codeclass="docutils literal notranslate"><spanclass="pre">test_exercises3.py</span></code> in the <codeclass="docutils literal notranslate"><spanclass="pre">test</span></code> directory will also test this
693
693
function.</p>
@@ -799,7 +799,7 @@ <h2><span class="section-number">2.7. </span>Application: Least squares problems
<aclass="reference external" href="http://scipy.github.io/devdocs/reference/generated/scipy.linalg.solve_triangular.html#scipy.linalg.solve_triangular" title="(in SciPy v1.8.0.dev0+2084.abafdff)"><codeclass="xref py py-func docutils literal notranslate"><spanclass="pre">scipy.linalg.solve_triangular()</span></code></a> to solve the resulting upper triangular
802
+
<aclass="reference external" href="http://scipy.github.io/devdocs/reference/generated/scipy.linalg.solve_triangular.html#scipy.linalg.solve_triangular" title="(in SciPy v1.9.0.dev0+1049.c9cdbf2)"><codeclass="xref py py-func docutils literal notranslate"><spanclass="pre">scipy.linalg.solve_triangular()</span></code></a> to solve the resulting upper triangular
803
803
system, before returning the solution <spanclass="math notranslate nohighlight">\(x\)</span>. The test script
804
804
<codeclass="docutils literal notranslate"><spanclass="pre">test_exercises3.py</span></code> in the <codeclass="docutils literal notranslate"><spanclass="pre">test</span></code> directory will also test this
</iframe></div></details><p>The computational way to view Gaussian elimination is through the LU
68
68
decomposition of an invertible matrix, <spanclass="math notranslate nohighlight">\(A=LU\)</span>, where <spanclass="math notranslate nohighlight">\(L\)</span> is lower
69
-
triangular (<spanclass="math notranslate nohighlight">\(l_{ij}=0\)</span> for <spanclass="math notranslate nohighlight">\(j<i\)</span>) and <spanclass="math notranslate nohighlight">\(U\)</span> is upper triangular
70
-
(<spanclass="math notranslate nohighlight">\(u_{ij}=0\)</span> for <spanclass="math notranslate nohighlight">\(j>i\)</span>). Here we use the symbol <spanclass="math notranslate nohighlight">\(U\)</span> instead of <spanclass="math notranslate nohighlight">\(R\)</span> to
69
+
triangular (<spanclass="math notranslate nohighlight">\(l_{ij}=0\)</span> for <spanclass="math notranslate nohighlight">\(j>i\)</span>) and <spanclass="math notranslate nohighlight">\(U\)</span> is upper triangular
70
+
(<spanclass="math notranslate nohighlight">\(u_{ij}=0\)</span> for <spanclass="math notranslate nohighlight">\(j<i\)</span>). Here we use the symbol <spanclass="math notranslate nohighlight">\(U\)</span> instead of <spanclass="math notranslate nohighlight">\(R\)</span> to
71
71
emphasise that we are looking as square matrices. The process of
72
72
obtaining the <spanclass="math notranslate nohighlight">\(LU\)</span> decomposition is very similar to the Householder
73
73
algorithm, in that we repeatedly left multiply <spanclass="math notranslate nohighlight">\(A\)</span> by matrices to
@@ -346,7 +346,7 @@ <h2><span class="section-number">4.1. </span>An algorithm for LU decomposition<a
346
346
They should use forward and backward substitution to solve lower
347
347
and upper triangular systems respectively. The interfaces are set
348
348
so that multiple right hand sides can be provided and solved at the
349
-
same time. The functions should only use one loop over the columns
349
+
same time. The functions should only use one loop over the rows
350
350
of <spanclass="math notranslate nohighlight">\(L\)</span> (or <spanclass="math notranslate nohighlight">\(U\)</span>), to efficiently solve the multiple problems. The
351
351
test script <codeclass="docutils literal notranslate"><spanclass="pre">test_exercises6.py</span></code> in the <codeclass="docutils literal notranslate"><spanclass="pre">test</span></code> directory will
<p>A generalisation of a diagonal matrix is a banded matrix, where
675
-
<spanclass="math notranslate nohighlight">\(A_{ij}=0\)</span> for <spanclass="math notranslate nohighlight">\(i>j+p\)</span> and for <spanclass="math notranslate nohighlight">\(i<j-q\)</span>. We call <spanclass="math notranslate nohighlight">\(p\)</span> the upper
676
-
bandwidth of <spanclass="math notranslate nohighlight">\(A\)</span>; <spanclass="math notranslate nohighlight">\(q\)</span> is the lower bandwidth. When the matrix is
675
+
<spanclass="math notranslate nohighlight">\(A_{ij}=0\)</span> for <spanclass="math notranslate nohighlight">\(i>j+p\)</span> and for <spanclass="math notranslate nohighlight">\(i<j-q\)</span>. We call <spanclass="math notranslate nohighlight">\(p\)</span> the lower
676
+
bandwidth of <spanclass="math notranslate nohighlight">\(A\)</span>; <spanclass="math notranslate nohighlight">\(q\)</span> is the upper bandwidth. When the matrix is
677
677
banded, there are already zeros below the diagonal of <spanclass="math notranslate nohighlight">\(A\)</span>, so we know
678
678
that the corresponding entries in the <spanclass="math notranslate nohighlight">\(L_k\)</span> matrices will be zero.
679
679
Further, because there are zeros above the diagonal of <spanclass="math notranslate nohighlight">\(A\)</span>, these do
</iframe></div></details><p>Power iteration is a simple method for finding the eigenvalue of
517
517
<spanclass="math notranslate nohighlight">\(A\)</span> with largest eigenvalue (in magnitude). It is based on the following
518
518
idea. We expand a vector <spanclass="math notranslate nohighlight">\(v\)</span> in eigenvectors of <spanclass="math notranslate nohighlight">\(A\)</span>,</p>
0 commit comments