Getting Started With Python for Quant Finance is the cohort-based course and community that will take you from complete beginner to up and running with Python for quant finance in 30 days.
The original version incorporated network data acquisition from Yahoo!Finance
from pandas_datareader
. Yahoo! changed their API and broke pandas_datareader
.
The changes allow you to specify your own data so you're not tied into equity
data from Yahoo! finance. If you're still using equity data, just download
a CSV from finance.yahoo.com and use the data.yahoo_data_helper
method
to form the data properly.
- Garman Klass
- Hodges Tompkins
- Parkinson
- Rogers Satchell
- Yang Zhang
- Standard Deviation
Also includes
- Skew
- Kurtosis
- Correlation
For each of the estimators, plot:
- Probability cones
- Rolling quantiles
- Rolling extremes
- Rolling descriptive statistics
- Histogram
- Comparison against arbirary comparable
- Correlation against arbirary comparable
- Regression against arbirary comparable
Create a term sheet with all the metrics printed to a PDF.
Example usage:
from volatility import volest
import yfinance as yf
# data
symbol = 'JPM'
bench = 'SPY'
estimator = 'GarmanKlass'
# estimator windows
window = 30
windows = [30, 60, 90, 120]
quantiles = [0.25, 0.75]
bins = 100
normed = True
# use the yahoo helper to correctly format data from finance.yahoo.com
jpm_price_data = yf.Ticker(symbol).history(period="5y")
jpm_price_data.symbol = symbol
spx_price_data = yf.Ticker(bench).history(period="5y")
spx_price_data.symbol = bench
# initialize class
vol = volest.VolatilityEstimator(
price_data=jpm_price_data,
estimator=estimator,
bench_data=spx_price_data
)
# call plt.show() on any of the below...
_, plt = vol.cones(windows=windows, quantiles=quantiles)
_, plt = vol.rolling_quantiles(window=window, quantiles=quantiles)
_, plt = vol.rolling_extremes(window=window)
_, plt = vol.rolling_descriptives(window=window)
_, plt = vol.histogram(window=window, bins=bins, normed=normed)
_, plt = vol.benchmark_compare(window=window)
_, plt = vol.benchmark_correlation(window=window)
# ... or create a pdf term sheet with all metrics in term-sheets/
vol.term_sheet(
window,
windows,
quantiles,
bins,
normed
)
Hit me on twitter with comments, questions, issues @jasonstrimpel