Python client for Apache Kafka
Clone or download
Permalink
Failed to load latest commit information.
benchmarks Add DefaultRecordBatch implementation aka V2 message format parser/bu… Oct 24, 2017
docs Release 1.4.3 May 26, 2018
kafka Support produce with Kafka record headers Sep 27, 2018
servers Add kafka 1.0.1 release to test fixtures (#1437) Mar 10, 2018
test Support produce with Kafka record headers Sep 27, 2018
.covrc Dont include kafka.vendor in coverage Aug 4, 2016
.gitignore Increase some integration test timeouts (#1374) Feb 9, 2018
.gitmodules Remove kafka src submodules Aug 13, 2014
.travis.yml Add kafka 1.0.1 release to test fixtures (#1437) Mar 10, 2018
AUTHORS.md Fix for Python 3 byte string handling in SASL auth (#1353) Jan 24, 2018
CHANGES.md Release 1.4.3 May 26, 2018
LICENSE Update LICENSE Feb 3, 2015
MANIFEST.in Include README.rst, CHANGES.md, and AUTHORS.md in manifest Dec 7, 2015
Makefile Add codec validators to record parser and builder for all formats (#1447 Apr 18, 2018
README.rst Support produce with Kafka record headers Sep 27, 2018
build_integration.sh Add kafka 1.0.1 release to test fixtures (#1437) Mar 10, 2018
example.py Added controlled thread shutdown to example.py (#1268) Oct 21, 2017
pylint.rc Introduce new fixtures to prepare for migration to pytest. Feb 21, 2018
requirements-dev.txt Add codec validators to record parser and builder for all formats (#1447 Apr 18, 2018
setup.cfg Add license to wheel Nov 4, 2017
setup.py Follow-up: support manual py26 testing; dont advertise 3.3 support Jun 17, 2017
tox.ini Introduce new fixtures to prepare for migration to pytest. Feb 21, 2018

README.rst

Kafka Python client

https://coveralls.io/repos/dpkp/kafka-python/badge.svg?branch=master&service=github https://travis-ci.org/dpkp/kafka-python.svg?branch=master

Python client for the Apache Kafka distributed stream processing system. kafka-python is designed to function much like the official java client, with a sprinkling of pythonic interfaces (e.g., consumer iterators).

kafka-python is best used with newer brokers (0.9+), but is backwards-compatible with older versions (to 0.8.0). Some features will only be enabled on newer brokers. For example, fully coordinated consumer groups -- i.e., dynamic partition assignment to multiple consumers in the same group -- requires use of 0.9+ kafka brokers. Supporting this feature for earlier broker releases would require writing and maintaining custom leadership election and membership / health check code (perhaps using zookeeper or consul). For older brokers, you can achieve something similar by manually assigning different partitions to each consumer instance with config management tools like chef, ansible, etc. This approach will work fine, though it does not support rebalancing on failures. See <https://kafka-python.readthedocs.io/en/master/compatibility.html> for more details.

Please note that the master branch may contain unreleased features. For release documentation, please see readthedocs and/or python's inline help.

>>> pip install kafka-python

KafkaConsumer

KafkaConsumer is a high-level message consumer, intended to operate as similarly as possible to the official java client. Full support for coordinated consumer groups requires use of kafka brokers that support the Group APIs: kafka v0.9+.

See <https://kafka-python.readthedocs.io/en/master/apidoc/KafkaConsumer.html> for API and configuration details.

The consumer iterator returns ConsumerRecords, which are simple namedtuples that expose basic message attributes: topic, partition, offset, key, and value:

>>> from kafka import KafkaConsumer
>>> consumer = KafkaConsumer('my_favorite_topic')
>>> for msg in consumer:
...     print (msg)
>>> # join a consumer group for dynamic partition assignment and offset commits
>>> from kafka import KafkaConsumer
>>> consumer = KafkaConsumer('my_favorite_topic', group_id='my_favorite_group')
>>> for msg in consumer:
...     print (msg)
>>> # manually assign the partition list for the consumer
>>> from kafka import TopicPartition
>>> consumer = KafkaConsumer(bootstrap_servers='localhost:1234')
>>> consumer.assign([TopicPartition('foobar', 2)])
>>> msg = next(consumer)
>>> # Deserialize msgpack-encoded values
>>> consumer = KafkaConsumer(value_deserializer=msgpack.loads)
>>> consumer.subscribe(['msgpackfoo'])
>>> for msg in consumer:
...     assert isinstance(msg.value, dict)
>>> # Access record headers. The returned value is a list of tuples
>>> # with str, bytes for key and value
>>> for msg in consumer:
...     print (msg.headers)
>>> # Get consumer metrics
>>> metrics = consumer.metrics()

KafkaProducer

KafkaProducer is a high-level, asynchronous message producer. The class is intended to operate as similarly as possible to the official java client. See <https://kafka-python.readthedocs.io/en/master/apidoc/KafkaProducer.html> for more details.

>>> from kafka import KafkaProducer
>>> producer = KafkaProducer(bootstrap_servers='localhost:1234')
>>> for _ in range(100):
...     producer.send('foobar', b'some_message_bytes')
>>> # Block until a single message is sent (or timeout)
>>> future = producer.send('foobar', b'another_message')
>>> result = future.get(timeout=60)
>>> # Block until all pending messages are at least put on the network
>>> # NOTE: This does not guarantee delivery or success! It is really
>>> # only useful if you configure internal batching using linger_ms
>>> producer.flush()
>>> # Use a key for hashed-partitioning
>>> producer.send('foobar', key=b'foo', value=b'bar')
>>> # Serialize json messages
>>> import json
>>> producer = KafkaProducer(value_serializer=lambda v: json.dumps(v).encode('utf-8'))
>>> producer.send('fizzbuzz', {'foo': 'bar'})
>>> # Serialize string keys
>>> producer = KafkaProducer(key_serializer=str.encode)
>>> producer.send('flipflap', key='ping', value=b'1234')
>>> # Compress messages
>>> producer = KafkaProducer(compression_type='gzip')
>>> for i in range(1000):
...     producer.send('foobar', b'msg %d' % i)
>>> # Include record headers. The format is list of tuples with string key
>>> # and bytes value.
>>> producer.send('foobar', value=b'c29tZSB2YWx1ZQ==', headers=[('content-encoding', b'base64')])
>>> # Get producer performance metrics
>>> metrics = producer.metrics()

Thread safety

The KafkaProducer can be used across threads without issue, unlike the KafkaConsumer which cannot.

While it is possible to use the KafkaConsumer in a thread-local manner, multiprocessing is recommended.

Compression

kafka-python supports gzip compression/decompression natively. To produce or consume lz4 compressed messages, you should install python-lz4 (pip install lz4). To enable snappy compression/decompression install python-snappy (also requires snappy library). See <https://kafka-python.readthedocs.io/en/master/install.html#optional-snappy-install> for more information.

Protocol

A secondary goal of kafka-python is to provide an easy-to-use protocol layer for interacting with kafka brokers via the python repl. This is useful for testing, probing, and general experimentation. The protocol support is leveraged to enable a KafkaClient.check_version() method that probes a kafka broker and attempts to identify which version it is running (0.8.0 to 1.0).

Low-level

Legacy support is maintained for low-level consumer and producer classes, SimpleConsumer and SimpleProducer. See <https://kafka-python.readthedocs.io/en/master/simple.html?highlight=SimpleProducer> for API details.