Skip to content

TypeError: 'NoneType' object is not subscriptable #990

Open
@zsrabbani

Description

@zsrabbani

I have QCNN model( I used qkeras library) and when I setup the below configuration and I got an error.
I updated the last version of hls4ml.

Model:

Layer (type) Output Shape Param

rf_input (InputLayer) [(None, 1024, 2)] 0

q_conv1d (QConv1D) (None, 1024, 64) 640

q_batch_normalization (QBa (None, 1024, 64) 256
tchNormalization)

q_activation (QActivation) (None, 1024, 64) 0

max_pooling1d (MaxPooling1 (None, 512, 64) 0
D)

q_conv1d_1 (QConv1D) (None, 512, 32) 10240

q_batch_normalization_1 (Q (None, 512, 32) 128
BatchNormalization)

q_activation_1 (QActivatio (None, 512, 32) 0
n)

max_pooling1d_1 (MaxPoolin (None, 256, 32) 0
g1D)

q_conv1d_2 (QConv1D) (None, 256, 16) 2560

q_batch_normalization_2 (Q (None, 256, 16) 64
BatchNormalization)

q_activation_2 (QActivatio (None, 256, 16) 0
n)

max_pooling1d_2 (MaxPoolin (None, 128, 16) 0
g1D)

flatten (Flatten) (None, 2048) 0

q_dense (QDense) (None, 128) 262144

dropout (Dropout) (None, 128) 0

q_dense_1 (QDense) (None, 128) 16384

dropout_1 (Dropout) (None, 128) 0

q_dense_2 (QDense) (None, 7) 896

activation (Activation) (None, 7) 0

=================================================================
Total params: 293312 (1.12 MB)
Trainable params: 293088 (1.12 MB)
Non-trainable params: 224 (896.00 Byte)

Here is my hls4ml setup:
hls_config = hls4ml.utils.config_from_keras_model(model, granularity='name')
hls_config['Model']['ReuseFactor']=16
hls_config['Model']['Strategy']='Resources'

for Layer in hls_config['LayerName'].keys():
hls_config['LayerName'][Layer]['Strategy'] = 'Resources'
hls_config['LayerName'][Layer]['ReuseFactor'] = 16

hls_config['LayerName']['softmax']['exp_table_t'] = 'ap_fixed<16,6>'
hls_config['LayerName']['softmax']['inv_table_t'] = 'ap_fixed<16,6>'
hls_config['LayerName']['output_softmax']['Strategy'] = 'Stable'

cfg = hls4ml.converters.create_config(backend='Vivado')
cfg['IOType'] = 'io_stream'
cfg['HLSConfig'] = hls_config
cfg['KerasModel'] = model
cfg['OutputDir'] = 'CNN_16_6'
hls_model = hls4ml.converters.convert_from_keras_model(
model, hls_config=hls_config, output_dir='CNN_16_6', backend='VivadoAccelerator', board='zcu102')

hls_model.compile()

The Result:
1
2

Metadata

Metadata

Assignees

No one assigned

    Labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions