Skip to content

🧠 Elasticsearch-powered MCP server with hierarchical memory categorization, intelligent auto-detection, and batch review capabilities

License

Notifications You must be signed in to change notification settings

fredac100/elasticsearch-memory-mcp

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

4 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

🧠 Elasticsearch Memory MCP

PyPI MCP License: MIT Python

A powerful Model Context Protocol (MCP) server that provides persistent, intelligent memory using Elasticsearch with hierarchical categorization and semantic search capabilities.

✨ Features

🎯 V6.2 - Latest Release

  • 🏷️ Hierarchical Memory Categorization

    • 5 category types: identity, active_context, active_project, technical_knowledge, archived
    • Automatic category detection with confidence scoring
    • Manual reclassification support
  • πŸ€– Intelligent Auto-Detection

    • Accumulative scoring system (0.7-0.95 confidence range)
    • 23+ specialized keyword patterns
    • Context-aware categorization
  • πŸ“¦ Batch Review System

    • Review uncategorized memories in batches
    • Approve/reject/reclassify workflows
    • 10x faster than individual categorization
  • πŸ”„ Backward Compatible Fallback

    • Seamlessly loads v5 uncategorized memories
    • No data loss during upgrades
    • Graceful degradation
  • πŸš€ Optimized Context Loading

    • Hierarchical priority loading (~30-40 memories vs 117)
    • 60-70% token reduction
    • Smart relevance ranking
  • πŸ’Ύ Persistent Memory

    • Vector embeddings for semantic search
    • Session management with checkpoints
    • Conversation snapshots

πŸ› οΈ Installation

Quick Start (Recommended)

Install directly from PyPI:

pip install elasticsearch-memory-mcp

Prerequisites

  • Python 3.8+
  • Elasticsearch 8.0+

Step 1: Start Elasticsearch

# Using Docker (recommended)
docker run -d -p 9200:9200 -e "discovery.type=single-node" elasticsearch:8.0.0

# Or install locally
# https://www.elastic.co/guide/en/elasticsearch/reference/current/install-elasticsearch.html

Step 2: Configure MCP

For Claude Desktop

Add to ~/.config/Claude/claude_desktop_config.json:

{
  "mcpServers": {
    "elasticsearch-memory": {
      "command": "uvx",
      "args": ["elasticsearch-memory-mcp"],
      "env": {
        "ELASTICSEARCH_URL": "http://localhost:9200"
      }
    }
  }
}

Note: If you don't have uvx, install with pip install uvx or use python -m elasticsearch_memory_mcp instead.

For Claude Code CLI

claude mcp add elasticsearch-memory uvx elasticsearch-memory-mcp \
  -e ELASTICSEARCH_URL=http://localhost:9200

Alternative: Install from Source

If you want to contribute or modify the code:

# Clone repository
git clone https://github.com/fredac100/elasticsearch-memory-mcp.git
cd elasticsearch-memory-mcp

# Create virtual environment
python3 -m venv venv
source venv/bin/activate

# Install in development mode
pip install -e .

Then configure MCP pointing to your local installation:

{
  "mcpServers": {
    "elasticsearch-memory": {
      "command": "/path/to/venv/bin/python",
      "args": ["-m", "mcp_server"],
      "env": {
        "ELASTICSEARCH_URL": "http://localhost:9200"
      }
    }
  }
}

πŸ“š Usage

Available Tools

1. save_memory

Save a new memory with automatic categorization.

{
  "content": "Fred prefers direct, brutal communication style",
  "type": "user_profile",
  "importance": 9,
  "tags": ["communication", "preference"]
}

2. load_initial_context (Resource)

Loads hierarchical context with:

  • Identity memories (who you are)
  • Active context (current work)
  • Active projects (ongoing)
  • Technical knowledge (relevant facts)

3. review_uncategorized_batch πŸ†• V6.2

Review uncategorized memories in batches.

{
  "batch_size": 10,
  "min_confidence": 0.6
}

Returns suggestions with auto-detected categories and confidence scores.

4. apply_batch_categorization πŸ†• V6.2

Apply categorizations in batch after review.

{
  "approve": ["id1", "id2"],           // Auto-categorize
  "reject": ["id3"],                    // Skip
  "reclassify": {"id4": "archived"}    // Force category
}

5. search_memory

Semantic search with filters.

{
  "query": "SAE project details",
  "limit": 5,
  "category": "active_project"
}

6. auto_categorize_memories

Batch auto-categorize uncategorized memories.

{
  "max_to_process": 50,
  "min_confidence": 0.75
}

πŸ—οΈ Architecture

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  Claude (MCP)   β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”˜
         β”‚
         β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  MCP Server (v6.2)          β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”‚
β”‚  β”‚ Auto-Detection      β”‚    β”‚
β”‚  β”‚ - Keyword matching  β”‚    β”‚
β”‚  β”‚ - Confidence score  β”‚    β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β”‚
β”‚                              β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”‚
β”‚  β”‚ Batch Review        β”‚    β”‚
β”‚  β”‚ - Review workflow   β”‚    β”‚
β”‚  β”‚ - Bulk operations   β”‚    β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
           β”‚
           β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  Elasticsearch               β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”‚
β”‚  β”‚ memories (index)       β”‚  β”‚
β”‚  β”‚ - embeddings (vector)  β”‚  β”‚
β”‚  β”‚ - memory_category      β”‚  β”‚
β”‚  β”‚ - category_confidence  β”‚  β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

πŸ“Š Category System

Category Description Examples
identity Core identity, values, preferences "Fred prefers brutal honesty"
active_context Current work, recent conversations "Working on SAE implementation"
active_project Ongoing projects "Mirror architecture design"
technical_knowledge Facts, configs, tools "Elasticsearch index settings"
archived Completed, deprecated, old migrations "Refactored old auth system"

🎯 Auto-Detection Examples

High Confidence (0.8-0.95)

"Fred prefere comunicaΓ§Γ£o brutal" β†’ identity (0.9)
"RefatoraΓ§Γ£o do sistema SAE concluΓ­da" β†’ archived (0.85)
"PrΓ³ximos passos: implementar dashboard" β†’ active_context (0.8)

Multiple Keywords (Accumulative Scoring)

"Fred prefere comunicaΓ§Γ£o brutal. Primeira vez usando este estilo."
  β†’ Match 1: "Fred prefere" (+0.9)
  β†’ Match 2: "primeira vez" (+0.8)
  β†’ Total: 0.95 (normalized)

πŸ”„ Migration from V5

The v6.2 system includes automatic fallback for v5 memories:

  1. Uncategorized memories β†’ Loaded via type/tags fallback
  2. Visual separation β†’ Categorized vs. fallback sections
  3. Batch review β†’ Categorize old memories efficiently
# Review and categorize v5 memories
review_uncategorized_batch(batch_size=20)
apply_batch_categorization(approve=[...])

πŸš€ Performance

  • Load initial context: ~10-15s (includes embedding model load)
  • Save memory: <1s
  • Search: <500ms
  • Batch review (10 items): ~2s
  • Auto-categorize (50 items): ~5s

πŸ§ͺ Testing

# Run quick test
python test_quick.py

# Expected output:
# βœ… Elasticsearch connected
# βœ… Context loaded
# βœ… Identity memories found
# βœ… Projects separated from fallback

πŸ“ Changelog

V6.2 (Latest)

  • βœ… Improved auto-detection (0.4 β†’ 0.9 confidence)
  • βœ… 23 new specialized keywords
  • βœ… Batch review tools (review_uncategorized_batch, apply_batch_categorization)
  • βœ… Visual separation (categorized vs fallback)
  • βœ… Accumulative confidence scoring

V6.1

  • βœ… Fallback mechanism for uncategorized memories
  • βœ… Backward compatibility with v5

V6.0

  • βœ… Memory categorization system
  • βœ… Hierarchical context loading
  • βœ… Auto-detection with confidence

🀝 Contributing

Contributions are welcome! Please:

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

πŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

πŸ™ Acknowledgments

πŸ“ž Support


Made with ❀️ for the Claude ecosystem

About

🧠 Elasticsearch-powered MCP server with hierarchical memory categorization, intelligent auto-detection, and batch review capabilities

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages