A minimal setup to let you crunch numbers like a pro.
Read the full article on Medium.
If you like to use the repository as a blueprint for your own projects just follow the steps below.
Replace data-science-project
with you project/environment name in:
- .travis.yml
- environment.yml
- README.md
- setup.py
Replace the package information in the setup.py with your own.
Skip this step if you have Anaconda or Miniconda installed already!
wget -O ~/miniconda.sh https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash ~/miniconda.sh -b -p ~/miniconda
rm ~/miniconda.sh
export PATH="$HOME/miniconda/bin:$PATH"
conda init
curl -fSL -o ~/miniconda.sh https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
bash ~/miniconda.sh -b -p ~/miniconda
rm ~/miniconda.sh
export PATH="$HOME/miniconda/bin:$PATH"
conda init
git clone https://github.com/datasciencejob-de/data-science-python-setup.git
conda env create -f environment.yml
conda activate data-science-project
conda env update -f environment.yml
conda activate data-science-project
jupyter notebook
See the Data README for more infos.
flake8 # Run code style checks
pytest # Run the tests