Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
25 changes: 25 additions & 0 deletions recipes/accelerate_configs/fsdp_qlora.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
compute_environment: LOCAL_MACHINE
debug: false
distributed_type: FSDP
downcast_bf16: 'no'
fsdp_config:
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_backward_prefetch: BACKWARD_PRE
fsdp_cpu_ram_efficient_loading: true
fsdp_forward_prefetch: false
fsdp_offload_params: true
fsdp_sharding_strategy: FULL_SHARD
fsdp_state_dict_type: SHARDED_STATE_DICT
fsdp_sync_module_states: true
fsdp_use_orig_params: false
machine_rank: 0
main_training_function: main
mixed_precision: 'no'
num_machines: 1
num_processes: 2
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false
4 changes: 4 additions & 0 deletions scripts/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@ In the handbook, we provide three main ways to align LLMs for chat:
- Full fine-tuning on a multi-GPU machine with DeepSpeed ZeRO-3 (tested on an 8 x A100 (80GB) node).
- LoRA or QLoRA fine-tuning on a single consumer 24GB GPU (tested on an RTX 4090).
- LoRA fine-tuning on a multi-GPU machine with DeepSpeed ZeRO-3 (tested on a 2 x A100s (80GB)).
- QLoRA fine-tuning on multi-GPU machine with FSDP (tested on a 2 x A6000s (48GB)).

In practice, we find comparable performance for both full and QLoRA fine-tuning, with the latter having the advantage of producing small adapter weights that are fast to upload and download from the Hugging Face Hub. Here are the general commands to fine-tune your models:

Expand All @@ -22,6 +23,9 @@ ACCELERATE_LOG_LEVEL=info accelerate launch --config_file recipes/accelerate_con

# LoRA training with ZeRO-3 on two or more GPUs
ACCELERATE_LOG_LEVEL=info accelerate launch --config_file recipes/accelerate_configs/deepspeed_zero3.yaml --num_processes={num_gpus} scripts/run_{task}.py recipes/{model_name}/{task}/config_qlora.yaml --load_in_4bit=false

# QLoRA training with FSDP on two or more GPUs
ACCELERATE_LOG_LEVEL=info accelerate launch --config_file recipes/accelerate_configs/fsdp+qlora.yaml --num_processes={num_gpus} scripts/run_{task}.py recipes/{model_name}/{task}/config_qlora.yaml --torch_dtype=bfloat16 --bnb_4bit_quant_storage=bfloat16
```

Here `{task}` refers to the type of training you wish to run. Currently the following tasks are supported:
Expand Down
4 changes: 2 additions & 2 deletions setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,7 @@
# * If a dependency is fast-moving (e.g. transformers), pin to the exact version
_deps = [
"accelerate>=0.29.2",
"bitsandbytes==0.41.2.post2",
"bitsandbytes>=0.43.0",
"black==23.1.0",
"datasets>=2.18.0",
"deepspeed==0.12.2",
Expand All @@ -57,7 +57,7 @@
"numpy>=1.24.2",
"packaging>=23.0",
"parameterized>=0.9.0",
"peft==0.7.1",
"peft>=0.9.0",
"protobuf<=3.20.2", # Needed to avoid conflicts with `transformers`
"pytest",
"safetensors>=0.3.3",
Expand Down
3 changes: 3 additions & 0 deletions src/alignment/configs.py
Original file line number Diff line number Diff line change
Expand Up @@ -185,6 +185,9 @@ class ModelArguments:
default="nf4", metadata={"help": "precise the quantization type (fp4 or nf4)"}
)
use_bnb_nested_quant: bool = field(default=False, metadata={"help": "use nested quantization"})
bnb_4bit_quant_storage: Optional[str] = field(
default="uint8", metadata={"help": "storage type to pack the quanitzed 4-bit prarams."}
)

def __post_init__(self):
if self.load_in_8bit and self.load_in_4bit:
Expand Down
1 change: 1 addition & 0 deletions src/alignment/model_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,6 +51,7 @@ def get_quantization_config(model_args: ModelArguments) -> BitsAndBytesConfig |
bnb_4bit_compute_dtype=compute_dtype,
bnb_4bit_quant_type=model_args.bnb_4bit_quant_type,
bnb_4bit_use_double_quant=model_args.use_bnb_nested_quant,
bnb_4bit_quant_storage=model_args.bnb_4bit_quant_storage,
)
elif model_args.load_in_8bit:
quantization_config = BitsAndBytesConfig(
Expand Down