-
Notifications
You must be signed in to change notification settings - Fork 6.2k
Description
Describe the bug
After the model files being finished with the downloads, I received two warnings:
1. You set add_prefix_space
. The tokenizer needs to be converted from the slow tokenizers
2. The config attributes {'qk_norm': 'rms_norm'} were passed to SD3Transformer2DModel, but are not expected and will be ignored. Please verify your config.json configuration file.
Then, lastly received this error given in the image.
Reproduction
!pip -q install datasets diffusers -U transformers accelerate torch
from huggingface_hub import login
login("hf_token")
import torch
from diffusers import StableDiffusion3Pipeline
pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-large").to("cuda")
Logs
You set `add_prefix_space`. The tokenizer needs to be converted from the slow tokenizers
The config attributes {'qk_norm': 'rms_norm'} were passed to SD3Transformer2DModel, but are not expected and will be ignored. Please verify your config.json configuration file.
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-3-689f4e5ef958> in <cell line: 7>()
5 from diffusers import StableDiffusion3Pipeline
6
----> 7 pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-large").to("cuda")
7 frames
/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py in _inner_fn(*args, **kwargs)
112 kwargs = smoothly_deprecate_use_auth_token(fn_name=fn.__name__, has_token=has_token, kwargs=kwargs)
113
--> 114 return fn(*args, **kwargs)
115
116 return _inner_fn # type: ignore
/usr/local/lib/python3.10/dist-packages/diffusers/pipelines/pipeline_utils.py in from_pretrained(cls, pretrained_model_name_or_path, **kwargs)
874 else:
875 # load sub model
--> 876 loaded_sub_model = load_sub_model(
877 library_name=library_name,
878 class_name=class_name,
/usr/local/lib/python3.10/dist-packages/diffusers/pipelines/pipeline_loading_utils.py in load_sub_model(library_name, class_name, importable_classes, pipelines, is_pipeline_module, pipeline_class, torch_dtype, provider, sess_options, device_map, max_memory, offload_folder, offload_state_dict, model_variants, name, from_flax, variant, low_cpu_mem_usage, cached_folder)
698 # check if the module is in a subdirectory
699 if os.path.isdir(os.path.join(cached_folder, name)):
--> 700 loaded_sub_model = load_method(os.path.join(cached_folder, name), **loading_kwargs)
701 else:
702 # else load from the root directory
/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py in _inner_fn(*args, **kwargs)
112 kwargs = smoothly_deprecate_use_auth_token(fn_name=fn.__name__, has_token=has_token, kwargs=kwargs)
113
--> 114 return fn(*args, **kwargs)
115
116 return _inner_fn # type: ignore
/usr/local/lib/python3.10/dist-packages/diffusers/models/modeling_utils.py in from_pretrained(cls, pretrained_model_name_or_path, **kwargs)
772 force_hook = False
773 try:
--> 774 accelerate.load_checkpoint_and_dispatch(
775 model,
776 model_file if not is_sharded else index_file,
/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py in load_checkpoint_and_dispatch(model, checkpoint, device_map, max_memory, no_split_module_classes, offload_folder, offload_buffers, dtype, offload_state_dict, skip_keys, preload_module_classes, force_hooks, strict)
611 if offload_state_dict is None and device_map is not None and "disk" in device_map.values():
612 offload_state_dict = True
--> 613 load_checkpoint_in_model(
614 model,
615 checkpoint,
/usr/local/lib/python3.10/dist-packages/accelerate/utils/modeling.py in load_checkpoint_in_model(model, checkpoint, device_map, offload_folder, dtype, offload_state_dict, offload_buffers, keep_in_fp32_modules, offload_8bit_bnb, strict)
1876 offload_weight(param, param_name, state_dict_folder, index=state_dict_index)
1877 else:
-> 1878 set_module_tensor_to_device(
1879 model,
1880 param_name,
/usr/local/lib/python3.10/dist-packages/accelerate/utils/modeling.py in set_module_tensor_to_device(module, tensor_name, device, value, dtype, fp16_statistics, tied_params_map)
334 new_module = getattr(module, split)
335 if new_module is None:
--> 336 raise ValueError(f"{module} has no attribute {split}.")
337 module = new_module
338 tensor_name = splits[-1]
ValueError: Attention(
(to_q): Linear(in_features=2432, out_features=2432, bias=True)
(to_k): Linear(in_features=2432, out_features=2432, bias=True)
(to_v): Linear(in_features=2432, out_features=2432, bias=True)
(add_k_proj): Linear(in_features=2432, out_features=2432, bias=True)
(add_v_proj): Linear(in_features=2432, out_features=2432, bias=True)
(add_q_proj): Linear(in_features=2432, out_features=2432, bias=True)
(to_out): ModuleList(
(0): Linear(in_features=2432, out_features=2432, bias=True)
(1): Dropout(p=0.0, inplace=False)
)
(to_add_out): Linear(in_features=2432, out_features=2432, bias=True)
) has no attribute norm_added_k.
System Info
Platform: google colab
Modules - versions:
diffusers - 0.30.3
transformers - 0.44.2
torch - 2.5.0+cu121
accelerate - 0.34.2