Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 6 additions & 6 deletions src/diffusers/pipelines/ddim/pipeline_ddim.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@


import warnings
from typing import Tuple, Union
from typing import Optional, Tuple, Union

import torch

Expand All @@ -31,11 +31,11 @@ def __init__(self, unet, scheduler):
@torch.no_grad()
def __call__(
self,
batch_size=1,
generator=None,
eta=0.0,
num_inference_steps=50,
output_type="pil",
batch_size: int = 1,
generator: Optional[torch.Generator] = None,
eta: float = 0.0,
num_inference_steps: int = 50,
output_type: Optional[str] = "pil",
return_dict: bool = True,
**kwargs,
) -> Union[ImagePipelineOutput, Tuple]:
Expand Down
9 changes: 7 additions & 2 deletions src/diffusers/pipelines/ddpm/pipeline_ddpm.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@


import warnings
from typing import Tuple, Union
from typing import Optional, Tuple, Union

import torch

Expand All @@ -30,7 +30,12 @@ def __init__(self, unet, scheduler):

@torch.no_grad()
def __call__(
self, batch_size=1, generator=None, output_type="pil", return_dict: bool = True, **kwargs
self,
batch_size: int = 1,
generator: Optional[torch.Generator] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
**kwargs,
) -> Union[ImagePipelineOutput, Tuple]:
if "torch_device" in kwargs:
device = kwargs.pop("torch_device")
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -10,13 +10,23 @@
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_outputs import BaseModelOutput
from transformers.modeling_utils import PreTrainedModel
from transformers.tokenization_utils import PreTrainedTokenizer
from transformers.utils import logging

from ...models import AutoencoderKL, UNet2DConditionModel, UNet2DModel, VQModel
from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from ...schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler


class LDMTextToImagePipeline(DiffusionPipeline):
def __init__(self, vqvae, bert, tokenizer, unet, scheduler):
def __init__(
self,
vqvae: Union[VQModel, AutoencoderKL],
bert: PreTrainedModel,
tokenizer: PreTrainedTokenizer,
unet: Union[UNet2DModel, UNet2DConditionModel],
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
):
super().__init__()
scheduler = scheduler.set_format("pt")
self.register_modules(vqvae=vqvae, bert=bert, tokenizer=tokenizer, unet=unet, scheduler=scheduler)
Expand Down Expand Up @@ -618,7 +628,7 @@ def custom_forward(*inputs):


class LDMBertModel(LDMBertPreTrainedModel):
def __init__(self, config):
def __init__(self, config: LDMBertConfig):
super().__init__(config)
self.model = LDMBertEncoder(config)
self.to_logits = nn.Linear(config.hidden_size, config.vocab_size)
Expand Down