Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 10 additions & 2 deletions src/diffusers/schedulers/scheduling_dpmsolver_singlestep.py
Original file line number Diff line number Diff line change
Expand Up @@ -282,17 +282,25 @@ def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.devic

self.sigmas = torch.from_numpy(sigmas)

# when num_inference_steps == num_train_timesteps, we can end up with
# duplicates in timesteps.
_, unique_indices = np.unique(timesteps, return_index=True)
timesteps = timesteps[np.sort(unique_indices)]

self.timesteps = torch.from_numpy(timesteps).to(device)

self.num_inference_steps = len(timesteps)

self.model_outputs = [None] * self.config.solver_order
self.sample = None

if not self.config.lower_order_final and num_inference_steps % self.config.solver_order != 0:
if not self.config.lower_order_final and self.num_inference_steps % self.config.solver_order != 0:
logger.warn(
"Changing scheduler {self.config} to have `lower_order_final` set to True to handle uneven amount of inference steps. Please make sure to always use an even number of `num_inference steps when using `lower_order_final=True`."
)
self.register_to_config(lower_order_final=True)

self.order_list = self.get_order_list(num_inference_steps)
self.order_list = self.get_order_list(self.num_inference_steps)

# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
Expand Down
8 changes: 8 additions & 0 deletions tests/schedulers/test_scheduler_dpm_single.py
Original file line number Diff line number Diff line change
Expand Up @@ -248,3 +248,11 @@ def test_fp16_support(self):
sample = scheduler.step(residual, t, sample).prev_sample

assert sample.dtype == torch.float16

def test_unique_timesteps(self, **config):
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config(**config)
scheduler = scheduler_class(**scheduler_config)

scheduler.set_timesteps(scheduler.config.num_train_timesteps)
assert len(scheduler.timesteps.unique()) == scheduler.num_inference_steps