Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 15 additions & 3 deletions examples/dreambooth/train_dreambooth_lora_sdxl.py
Original file line number Diff line number Diff line change
Expand Up @@ -402,6 +402,12 @@ def parse_args(input_args=None):
parser.add_argument(
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
)
parser.add_argument(
"--rank",
type=int,
default=4,
help=("The dimension of the LoRA update matrices."),
)

if input_args is not None:
args = parser.parse_args(input_args)
Expand Down Expand Up @@ -767,7 +773,9 @@ def main(args):
lora_attn_processor_class = (
LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor
)
module = lora_attn_processor_class(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim)
module = lora_attn_processor_class(
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=args.rank
)
unet_lora_attn_procs[name] = module
unet_lora_parameters.extend(module.parameters())

Expand All @@ -777,8 +785,12 @@ def main(args):
# So, instead, we monkey-patch the forward calls of its attention-blocks.
if args.train_text_encoder:
# ensure that dtype is float32, even if rest of the model that isn't trained is loaded in fp16
text_lora_parameters_one = LoraLoaderMixin._modify_text_encoder(text_encoder_one, dtype=torch.float32)
text_lora_parameters_two = LoraLoaderMixin._modify_text_encoder(text_encoder_two, dtype=torch.float32)
text_lora_parameters_one = LoraLoaderMixin._modify_text_encoder(
text_encoder_one, dtype=torch.float32, rank=args.rank
)
text_lora_parameters_two = LoraLoaderMixin._modify_text_encoder(
text_encoder_two, dtype=torch.float32, rank=args.rank
)

# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
def save_model_hook(models, weights, output_dir):
Expand Down