Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion src/diffusers/schedulers/scheduling_deis_multistep.py
Original file line number Diff line number Diff line change
Expand Up @@ -293,7 +293,7 @@ def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
def _sigma_to_t(self, sigma, log_sigmas):
# get log sigma
log_sigma = np.log(sigma)
log_sigma = np.log(np.maximum(sigma, 1e-10))

# get distribution
dists = log_sigma - log_sigmas[:, np.newaxis]
Expand Down
2 changes: 1 addition & 1 deletion src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
Original file line number Diff line number Diff line change
Expand Up @@ -313,7 +313,7 @@ def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
def _sigma_to_t(self, sigma, log_sigmas):
# get log sigma
log_sigma = np.log(sigma)
log_sigma = np.log(np.maximum(sigma, 1e-10))

# get distribution
dists = log_sigma - log_sigmas[:, np.newaxis]
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -323,7 +323,7 @@ def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
def _sigma_to_t(self, sigma, log_sigmas):
# get log sigma
log_sigma = np.log(sigma)
log_sigma = np.log(np.maximum(sigma, 1e-10))

# get distribution
dists = log_sigma - log_sigmas[:, np.newaxis]
Expand Down
2 changes: 1 addition & 1 deletion src/diffusers/schedulers/scheduling_dpmsolver_sde.py
Original file line number Diff line number Diff line change
Expand Up @@ -373,7 +373,7 @@ def t_fn(_sigma):
# copied from diffusers.schedulers.scheduling_euler_discrete._sigma_to_t
def _sigma_to_t(self, sigma, log_sigmas):
# get log sigma
log_sigma = np.log(sigma)
log_sigma = np.log(np.maximum(sigma, 1e-10))

# get distribution
dists = log_sigma - log_sigmas[:, np.newaxis]
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -327,7 +327,7 @@ def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
def _sigma_to_t(self, sigma, log_sigmas):
# get log sigma
log_sigma = np.log(sigma)
log_sigma = np.log(np.maximum(sigma, 1e-10))

# get distribution
dists = log_sigma - log_sigmas[:, np.newaxis]
Expand Down
2 changes: 1 addition & 1 deletion src/diffusers/schedulers/scheduling_euler_discrete.py
Original file line number Diff line number Diff line change
Expand Up @@ -278,7 +278,7 @@ def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.devic

def _sigma_to_t(self, sigma, log_sigmas):
# get log sigma
log_sigma = np.log(sigma)
log_sigma = np.log(np.maximum(sigma, 1e-10))

# get distribution
dists = log_sigma - log_sigmas[:, np.newaxis]
Expand Down
2 changes: 1 addition & 1 deletion src/diffusers/schedulers/scheduling_heun_discrete.py
Original file line number Diff line number Diff line change
Expand Up @@ -280,7 +280,7 @@ def set_timesteps(
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
def _sigma_to_t(self, sigma, log_sigmas):
# get log sigma
log_sigma = np.log(sigma)
log_sigma = np.log(np.maximum(sigma, 1e-10))

# get distribution
dists = log_sigma - log_sigmas[:, np.newaxis]
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -301,7 +301,7 @@ def set_timesteps(
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
def _sigma_to_t(self, sigma, log_sigmas):
# get log sigma
log_sigma = np.log(sigma)
log_sigma = np.log(np.maximum(sigma, 1e-10))

# get distribution
dists = log_sigma - log_sigmas[:, np.newaxis]
Expand Down
2 changes: 1 addition & 1 deletion src/diffusers/schedulers/scheduling_k_dpm_2_discrete.py
Original file line number Diff line number Diff line change
Expand Up @@ -312,7 +312,7 @@ def _init_step_index(self, timestep):
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
def _sigma_to_t(self, sigma, log_sigmas):
# get log sigma
log_sigma = np.log(sigma)
log_sigma = np.log(np.maximum(sigma, 1e-10))

# get distribution
dists = log_sigma - log_sigmas[:, np.newaxis]
Expand Down
2 changes: 1 addition & 1 deletion src/diffusers/schedulers/scheduling_lms_discrete.py
Original file line number Diff line number Diff line change
Expand Up @@ -305,7 +305,7 @@ def _init_step_index(self, timestep):
# copied from diffusers.schedulers.scheduling_euler_discrete._sigma_to_t
def _sigma_to_t(self, sigma, log_sigmas):
# get log sigma
log_sigma = np.log(sigma)
log_sigma = np.log(np.maximum(sigma, 1e-10))

# get distribution
dists = log_sigma - log_sigmas[:, np.newaxis]
Expand Down
2 changes: 1 addition & 1 deletion src/diffusers/schedulers/scheduling_unipc_multistep.py
Original file line number Diff line number Diff line change
Expand Up @@ -307,7 +307,7 @@ def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
def _sigma_to_t(self, sigma, log_sigmas):
# get log sigma
log_sigma = np.log(sigma)
log_sigma = np.log(np.maximum(sigma, 1e-10))

# get distribution
dists = log_sigma - log_sigmas[:, np.newaxis]
Expand Down