Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
81 changes: 60 additions & 21 deletions src/diffusers/models/controlnetxs.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,9 +23,7 @@

from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, logging
from .attention_processor import (
AttentionProcessor,
)
from .attention_processor import USE_PEFT_BACKEND, AttentionProcessor
from .autoencoders import AutoencoderKL
from .lora import LoRACompatibleConv
from .modeling_utils import ModelMixin
Expand Down Expand Up @@ -817,11 +815,23 @@ def increase_block_input_in_encoder_resnet(unet: UNet2DConditionModel, block_no,
norm_kwargs = {a: getattr(old_norm1, a) for a in norm_args}
norm_kwargs["num_channels"] += by # surgery done here
# conv1
conv1_args = (
"in_channels out_channels kernel_size stride padding dilation groups bias padding_mode lora_layer".split(" ")
)
conv1_args = [
"in_channels",
"out_channels",
"kernel_size",
"stride",
"padding",
"dilation",
"groups",
"bias",
"padding_mode",
]
if not USE_PEFT_BACKEND:
conv1_args.append("lora_layer")

for a in conv1_args:
assert hasattr(old_conv1, a)

conv1_kwargs = {a: getattr(old_conv1, a) for a in conv1_args}
conv1_kwargs["bias"] = "bias" in conv1_kwargs # as param, bias is a boolean, but as attr, it's a tensor.
conv1_kwargs["in_channels"] += by # surgery done here
Expand All @@ -839,25 +849,42 @@ def increase_block_input_in_encoder_resnet(unet: UNet2DConditionModel, block_no,
}
# swap old with new modules
unet.down_blocks[block_no].resnets[resnet_idx].norm1 = GroupNorm(**norm_kwargs)
unet.down_blocks[block_no].resnets[resnet_idx].conv1 = LoRACompatibleConv(**conv1_kwargs)
unet.down_blocks[block_no].resnets[resnet_idx].conv_shortcut = LoRACompatibleConv(**conv_shortcut_args_kwargs)
unet.down_blocks[block_no].resnets[resnet_idx].conv1 = (
nn.Conv2d(**conv1_kwargs) if USE_PEFT_BACKEND else LoRACompatibleConv(**conv1_kwargs)
)
unet.down_blocks[block_no].resnets[resnet_idx].conv_shortcut = (
nn.Conv2d(**conv_shortcut_args_kwargs) if USE_PEFT_BACKEND else LoRACompatibleConv(**conv_shortcut_args_kwargs)
)
unet.down_blocks[block_no].resnets[resnet_idx].in_channels += by # surgery done here


def increase_block_input_in_encoder_downsampler(unet: UNet2DConditionModel, block_no, by):
"""Increase channels sizes to allow for additional concatted information from base model"""
old_down = unet.down_blocks[block_no].downsamplers[0].conv
# conv1
args = "in_channels out_channels kernel_size stride padding dilation groups bias padding_mode lora_layer".split(
" "
)

args = [
"in_channels",
"out_channels",
"kernel_size",
"stride",
"padding",
"dilation",
"groups",
"bias",
"padding_mode",
]
if not USE_PEFT_BACKEND:
args.append("lora_layer")

for a in args:
assert hasattr(old_down, a)
kwargs = {a: getattr(old_down, a) for a in args}
kwargs["bias"] = "bias" in kwargs # as param, bias is a boolean, but as attr, it's a tensor.
kwargs["in_channels"] += by # surgery done here
# swap old with new modules
unet.down_blocks[block_no].downsamplers[0].conv = LoRACompatibleConv(**kwargs)
unet.down_blocks[block_no].downsamplers[0].conv = (
nn.Conv2d(**kwargs) if USE_PEFT_BACKEND else LoRACompatibleConv(**kwargs)
)
unet.down_blocks[block_no].downsamplers[0].channels += by # surgery done here


Expand All @@ -871,12 +898,20 @@ def increase_block_input_in_mid_resnet(unet: UNet2DConditionModel, by):
assert hasattr(old_norm1, a)
norm_kwargs = {a: getattr(old_norm1, a) for a in norm_args}
norm_kwargs["num_channels"] += by # surgery done here
# conv1
conv1_args = (
"in_channels out_channels kernel_size stride padding dilation groups bias padding_mode lora_layer".split(" ")
)
for a in conv1_args:
assert hasattr(old_conv1, a)
conv1_args = [
"in_channels",
"out_channels",
"kernel_size",
"stride",
"padding",
"dilation",
"groups",
"bias",
"padding_mode",
]
if not USE_PEFT_BACKEND:
conv1_args.append("lora_layer")

conv1_kwargs = {a: getattr(old_conv1, a) for a in conv1_args}
conv1_kwargs["bias"] = "bias" in conv1_kwargs # as param, bias is a boolean, but as attr, it's a tensor.
conv1_kwargs["in_channels"] += by # surgery done here
Expand All @@ -894,8 +929,12 @@ def increase_block_input_in_mid_resnet(unet: UNet2DConditionModel, by):
}
# swap old with new modules
unet.mid_block.resnets[0].norm1 = GroupNorm(**norm_kwargs)
unet.mid_block.resnets[0].conv1 = LoRACompatibleConv(**conv1_kwargs)
unet.mid_block.resnets[0].conv_shortcut = LoRACompatibleConv(**conv_shortcut_args_kwargs)
unet.mid_block.resnets[0].conv1 = (
nn.Conv2d(**conv1_kwargs) if USE_PEFT_BACKEND else LoRACompatibleConv(**conv1_kwargs)
)
unet.mid_block.resnets[0].conv_shortcut = (
nn.Conv2d(**conv_shortcut_args_kwargs) if USE_PEFT_BACKEND else LoRACompatibleConv(**conv_shortcut_args_kwargs)
)
unet.mid_block.resnets[0].in_channels += by # surgery done here


Expand Down
9 changes: 7 additions & 2 deletions tests/pipelines/controlnetxs/test_controlnetxs.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,7 @@
enable_full_determinism,
load_image,
load_numpy,
numpy_cosine_similarity_distance,
require_python39_or_higher,
require_torch_2,
require_torch_gpu,
Expand Down Expand Up @@ -273,7 +274,9 @@ def test_canny(self):

original_image = image[-3:, -3:, -1].flatten()
expected_image = np.array([0.1274, 0.1401, 0.147, 0.1185, 0.1555, 0.1492, 0.1565, 0.1474, 0.1701])
assert np.allclose(original_image, expected_image, atol=1e-04)

max_diff = numpy_cosine_similarity_distance(original_image, expected_image)
assert max_diff < 1e-4

def test_depth(self):
controlnet = ControlNetXSModel.from_pretrained("UmerHA/ConrolNetXS-SD2.1-depth")
Expand All @@ -298,7 +301,9 @@ def test_depth(self):

original_image = image[-3:, -3:, -1].flatten()
expected_image = np.array([0.1098, 0.1025, 0.1211, 0.1129, 0.1165, 0.1262, 0.1185, 0.1261, 0.1703])
assert np.allclose(original_image, expected_image, atol=1e-04)

max_diff = numpy_cosine_similarity_distance(original_image, expected_image)
assert max_diff < 1e-4

@require_python39_or_higher
@require_torch_2
Expand Down