Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Introduce OVQuantizationConfig for nncf.quantize() parameters #638

Merged
Merged
Show file tree
Hide file tree
Changes from 11 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions optimum/intel/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -124,6 +124,7 @@
"OVModelForVision2Seq",
"OVModelForSequenceClassification",
"OVModelForTokenClassification",
"OVQuantizationConfig",
"OVWeightQuantizationConfig",
"OVConfig",
]
Expand Down Expand Up @@ -243,6 +244,7 @@
OVModelForSpeechSeq2Seq,
OVModelForTokenClassification,
OVModelForVision2Seq,
OVQuantizationConfig,
OVWeightQuantizationConfig,
)

Expand Down
2 changes: 1 addition & 1 deletion optimum/intel/openvino/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,7 @@
from .trainer import OVTrainer


from .configuration import OVConfig, OVWeightQuantizationConfig
from .configuration import OVConfig, OVQuantizationConfig, OVWeightQuantizationConfig
from .modeling import (
OVModelForAudioClassification,
OVModelForAudioFrameClassification,
Expand Down
316 changes: 215 additions & 101 deletions optimum/intel/openvino/configuration.py

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion optimum/intel/openvino/modeling_decoder.py
Original file line number Diff line number Diff line change
Expand Up @@ -640,7 +640,7 @@ def _from_pretrained(
# from optimum.gptq.utils import get_seqlen

# seqlen = get_seqlen(causal_model)
nsamples = quantization_config.num_samples if quantization_config.num_samples else 128
nsamples = quantization_config.subset_size if quantization_config.subset_size else 128
dataset = get_dataset(quantization_config.dataset, tokenizer, seqlen=32, nsamples=nsamples)
dataset = prepare_dataset(dataset)
quantization_config = copy.deepcopy(quantization_config)
Expand Down
2 changes: 1 addition & 1 deletion optimum/intel/openvino/modeling_diffusion.py
Original file line number Diff line number Diff line change
Expand Up @@ -321,7 +321,7 @@ def _from_pretrained(
if not isinstance(sd_model, supported_pipelines):
raise NotImplementedError(f"Quantization in hybrid mode is not supported for {cls.__name__}")

nsamples = quantization_config.num_samples if quantization_config.num_samples else 200
nsamples = quantization_config.subset_size if quantization_config.subset_size else 200
unet_inputs = sd_model._prepare_unet_inputs(quantization_config.dataset, nsamples)

from .quantization import _hybrid_quantization
Expand Down
245 changes: 126 additions & 119 deletions optimum/intel/openvino/quantization.py

Large diffs are not rendered by default.

31 changes: 30 additions & 1 deletion optimum/intel/openvino/trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -89,7 +89,7 @@

from ..utils.constant import _TASK_ALIASES
from ..utils.import_utils import is_transformers_version
from .configuration import DEFAULT_QUANTIZATION_CONFIG, OVConfig
from .configuration import OVConfig
from .quantization import OVDataLoader
from .training_args import OVTrainingArguments
from .utils import (
Expand Down Expand Up @@ -136,6 +136,25 @@
NNCF_LOG_FILE_NAME = "nncf_output.log"


DEFAULT_QUANTIZATION_CONFIG = {
"algorithm": "quantization",
"preset": "mixed",
"overflow_fix": "disable",
"initializer": {
"range": {"num_init_samples": 300, "type": "mean_min_max"},
"batchnorm_adaptation": {"num_bn_adaptation_samples": 0},
},
"scope_overrides": {"activations": {"{re}.*matmul_0": {"mode": "symmetric"}}},
"ignored_scopes": [
"{re}.*Embedding.*",
"{re}.*add___.*",
"{re}.*layer_norm_.*",
"{re}.*matmul_1",
"{re}.*__truediv__.*",
],
}


def _onnx_export_nncf_model(model: NNCFNetwork, config: OnnxConfig, output: Union[str, io.BytesIO], opset: int = None):
# TODO: remove it when fix controller.strip(copy=True) behavior
signature = inspect.signature(model.forward)
Expand Down Expand Up @@ -228,6 +247,16 @@ def __init__(
if self.ov_config is not None:
if self.ov_config.compression is None:
self.ov_config.compression = DEFAULT_QUANTIZATION_CONFIG
if (
isinstance(self.ov_config.compression, dict)
and "algorithm" in self.ov_config.compression
and self.ov_config.compression["algorithm"] == "quantization"
):
self.ov_config.compression["export_to_onnx_standard_ops"] = self.ov_config.save_onnx_model
elif isinstance(self.ov_config.compression, list):
for i, algo_config in enumerate(self.ov_config.compression):
if algo_config["algorithm"] == "quantization":
self.ov_config.compression[i]["export_to_onnx_standard_ops"] = self.ov_config.save_onnx_model

if self.args.do_train:
self._set_task()
Expand Down
Loading
Loading