Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Clean Trainer tests and datasets dep #8268

Merged
merged 1 commit into from
Nov 3, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 0 additions & 6 deletions .circleci/config.yml
Original file line number Diff line number Diff line change
Expand Up @@ -77,7 +77,6 @@ jobs:
- v0.4-torch_and_tf-{{ checksum "setup.py" }}
- v0.4-{{ checksum "setup.py" }}
- run: pip install --upgrade pip
- run: pip install git+https://github.com/huggingface/datasets
- run: pip install .[sklearn,tf-cpu,torch,testing]
- save_cache:
key: v0.4-{{ checksum "setup.py" }}
Expand All @@ -102,7 +101,6 @@ jobs:
- v0.4-torch-{{ checksum "setup.py" }}
- v0.4-{{ checksum "setup.py" }}
- run: pip install --upgrade pip
- run: pip install git+https://github.com/huggingface/datasets
- run: pip install .[sklearn,torch,testing]
- save_cache:
key: v0.4-torch-{{ checksum "setup.py" }}
Expand All @@ -129,7 +127,6 @@ jobs:
- v0.4-tf-{{ checksum "setup.py" }}
- v0.4-{{ checksum "setup.py" }}
- run: pip install --upgrade pip
- run: pip install git+https://github.com/huggingface/datasets
- run: pip install .[sklearn,tf-cpu,testing]
- save_cache:
key: v0.4-tf-{{ checksum "setup.py" }}
Expand All @@ -154,7 +151,6 @@ jobs:
- v0.4-flax-{{ checksum "setup.py" }}
- v0.4-{{ checksum "setup.py" }}
- run: pip install --upgrade pip
- run: pip install git+https://github.com/huggingface/datasets
- run: sudo pip install .[flax,sklearn,torch,testing]
- save_cache:
key: v0.4-flax-{{ checksum "setup.py" }}
Expand All @@ -179,7 +175,6 @@ jobs:
- v0.4-torch-{{ checksum "setup.py" }}
- v0.4-{{ checksum "setup.py" }}
- run: pip install --upgrade pip
- run: pip install git+https://github.com/huggingface/datasets
- run: pip install .[sklearn,torch,testing]
- save_cache:
key: v0.4-torch-{{ checksum "setup.py" }}
Expand All @@ -204,7 +199,6 @@ jobs:
- v0.4-tf-{{ checksum "setup.py" }}
- v0.4-{{ checksum "setup.py" }}
- run: pip install --upgrade pip
- run: pip install git+https://github.com/huggingface/datasets
- run: pip install .[sklearn,tf-cpu,testing]
- save_cache:
key: v0.4-tf-{{ checksum "setup.py" }}
Expand Down
31 changes: 18 additions & 13 deletions tests/test_trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,13 +18,13 @@
import tempfile
import unittest

import datasets
import numpy as np

from transformers import AutoTokenizer, EvaluationStrategy, PretrainedConfig, TrainingArguments, is_torch_available
from transformers.file_utils import WEIGHTS_NAME
from transformers.testing_utils import (
get_tests_dir,
require_datasets,
require_optuna,
require_sentencepiece,
require_tokenizers,
Expand Down Expand Up @@ -340,7 +340,10 @@ def test_predict(self):
self.assertTrue(np.array_equal(labels[0], trainer.eval_dataset.ys[0]))
self.assertTrue(np.array_equal(labels[1], trainer.eval_dataset.ys[1]))

@require_datasets
def test_trainer_with_datasets(self):
import datasets

np.random.seed(42)
x = np.random.normal(size=(64,)).astype(np.float32)
y = 2.0 * x + 3.0 + np.random.normal(scale=0.1, size=(64,))
Expand Down Expand Up @@ -658,15 +661,17 @@ def model_init(trial):
def hp_name(trial):
return MyTrialShortNamer.shortname(trial.params)

trainer = get_regression_trainer(
learning_rate=0.1,
logging_steps=1,
evaluation_strategy=EvaluationStrategy.EPOCH,
num_train_epochs=4,
disable_tqdm=True,
load_best_model_at_end=True,
logging_dir="runs",
run_name="test",
model_init=model_init,
)
trainer.hyperparameter_search(direction="minimize", hp_space=hp_space, hp_name=hp_name, n_trials=4)
with tempfile.TemporaryDirectory() as tmp_dir:
trainer = get_regression_trainer(
output_dir=tmp_dir,
learning_rate=0.1,
logging_steps=1,
evaluation_strategy=EvaluationStrategy.EPOCH,
num_train_epochs=4,
disable_tqdm=True,
load_best_model_at_end=True,
logging_dir="runs",
run_name="test",
model_init=model_init,
)
trainer.hyperparameter_search(direction="minimize", hp_space=hp_space, hp_name=hp_name, n_trials=4)