Skip to content

I915_CONTEXT_PARAM_PERSISTENCE support #228

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed

Conversation

BartoszDunajski
Copy link
Contributor

Add new IOCTL call to disable persistence on given context

Signed-off-by: Dunajski, Bartosz bartosz.dunajski@intel.com

Copy link
Contributor

@MichalMrozek MichalMrozek left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

looks good to me

Add new IOCTL call to disable persistence on given context

Signed-off-by: Dunajski, Bartosz <bartosz.dunajski@intel.com>
@SlawomirMakowski
Copy link

Internal testing was done.

Testing scenario:

  • spawn 2 separate processes that will occupy GPU (i915) for long time (like couple of minutes)
  • kill one of the processes

Expected behavior: second process runs until completion and no GPU hang is present.

I have executed above scenario on Kaby Lake with:

  1. Ubuntu 18.04.1 LTS default kernel and compute-runtime driver from top
  2. Ubuntu 18.04.1 LTS with kernel containing following patchwork: https://patchwork.freedesktop.org/series/68515/ and compute-runtime driver containing changes from this PR

For 1. I have observed GPU reset because driver has finished and there were still work on i915 engine present for first process.
For 2. No GPU reset occurred and second process finished without any issues because after killing first process driver finished and no work on i915 engine was present for this process.

sys-oak pushed a commit to intel/mainline-tracking that referenced this pull request Dec 6, 2019
Our existing behaviour is to allow contexts and their GPU requests to
persist past the point of closure until the requests are complete. This
allows clients to operate in a 'fire-and-forget' manner where they can
setup a rendering pipeline and hand it over to the display server and
immediately exit. As the rendering pipeline is kept alive until
completion, the display server (or other consumer) can use the results
in the future and present them to the user.

The compute model is a little different. They have little to no buffer
sharing between processes as their kernels tend to operate on a
continuous stream, feeding the results back to the client application.
These kernels operate for an indeterminate length of time, with many
clients wishing that the kernel was always running for as long as they
keep feeding in the data, i.e. acting like a DSP.

Not all clients want this persistent "desktop" behaviour and would prefer
that the contexts are cleaned up immediately upon closure. This ensures
that when clients are run without hangchecking (e.g. for compute kernels
of indeterminate runtime), any GPU hang or other unexpected workloads
are terminated with the process and does not continue to hog resources.

The default behaviour for new contexts is the legacy persistence mode,
as some desktop applications are dependent upon the existing behaviour.
New clients will have to opt in to immediate cleanup on context
closure. If the hangchecking modparam is disabled, so is persistent
context support -- all contexts will be terminated on closure.

We expect this behaviour change to be welcomed by compute users, who
have often been caught between a rock and a hard place. They disable
hangchecking to avoid their kernels being "unfairly" declared hung, but
have also experienced true hangs that the system was then unable to
clean up. Naturally, this leads to bug reports.

Testcase: igt/gem_ctx_persistence
Link: intel/compute-runtime#228
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Michał Winiarski <michal.winiarski@intel.com>
Cc: Jon Bloomfield 
Reviewed-by: Jon Bloomfield 
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Acked-by: Jason Ekstrand <jason@jlekstrand.net>
Link: https://patchwork.freedesktop.org/patch/msgid/20191029202338.8841-1-chris@chris-wilson.co.uk
@MichalMrozek
Copy link
Contributor

MichalMrozek commented Jan 7, 2020

Change is merged 07cacd4

JeevakaPrabu pushed a commit to JeevakaPrabu/linux-intel-lts2019-chromium that referenced this pull request Jun 18, 2020
Our existing behaviour is to allow contexts and their GPU requests to
persist past the point of closure until the requests are complete. This
allows clients to operate in a 'fire-and-forget' manner where they can
setup a rendering pipeline and hand it over to the display server and
immediately exit. As the rendering pipeline is kept alive until
completion, the display server (or other consumer) can use the results
in the future and present them to the user.

The compute model is a little different. They have little to no buffer
sharing between processes as their kernels tend to operate on a
continuous stream, feeding the results back to the client application.
These kernels operate for an indeterminate length of time, with many
clients wishing that the kernel was always running for as long as they
keep feeding in the data, i.e. acting like a DSP.

Not all clients want this persistent "desktop" behaviour and would prefer
that the contexts are cleaned up immediately upon closure. This ensures
that when clients are run without hangchecking (e.g. for compute kernels
of indeterminate runtime), any GPU hang or other unexpected workloads
are terminated with the process and does not continue to hog resources.

The default behaviour for new contexts is the legacy persistence mode,
as some desktop applications are dependent upon the existing behaviour.
New clients will have to opt in to immediate cleanup on context
closure. If the hangchecking modparam is disabled, so is persistent
context support -- all contexts will be terminated on closure.

We expect this behaviour change to be welcomed by compute users, who
have often been caught between a rock and a hard place. They disable
hangchecking to avoid their kernels being "unfairly" declared hung, but
have also experienced true hangs that the system was then unable to
clean up. Naturally, this leads to bug reports.

Testcase: igt/gem_ctx_persistence
Link: intel/compute-runtime#228
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Michał Winiarski <michal.winiarski@intel.com>
Cc: Jon Bloomfield <jon.bloomfield@intel.com>
Reviewed-by: Jon Bloomfield <jon.bloomfield@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Acked-by: Jason Ekstrand <jason@jlekstrand.net>
Link: https://patchwork.freedesktop.org/patch/msgid/20191029202338.8841-1-chris@chris-wilson.co.uk
(cherry picked from commit a0e047156cdebbccf253768b39d7e1dbf954c449)

BUG=b:152719649
TEST=Test Graphics/Media/Display use cases

Signed-off-by: Ap, Kamal <kamal.ap@intel.com>
Change-Id: Iccf876394da8eaebfad011c4e45c8b466aec6f53
kitakar5525 pushed a commit to kitakar5525/linux-kernel that referenced this pull request Sep 17, 2020
Our existing behaviour is to allow contexts and their GPU requests to
persist past the point of closure until the requests are complete. This
allows clients to operate in a 'fire-and-forget' manner where they can
setup a rendering pipeline and hand it over to the display server and
immediately exit. As the rendering pipeline is kept alive until
completion, the display server (or other consumer) can use the results
in the future and present them to the user.

The compute model is a little different. They have little to no buffer
sharing between processes as their kernels tend to operate on a
continuous stream, feeding the results back to the client application.
These kernels operate for an indeterminate length of time, with many
clients wishing that the kernel was always running for as long as they
keep feeding in the data, i.e. acting like a DSP.

Not all clients want this persistent "desktop" behaviour and would prefer
that the contexts are cleaned up immediately upon closure. This ensures
that when clients are run without hangchecking (e.g. for compute kernels
of indeterminate runtime), any GPU hang or other unexpected workloads
are terminated with the process and does not continue to hog resources.

The default behaviour for new contexts is the legacy persistence mode,
as some desktop applications are dependent upon the existing behaviour.
New clients will have to opt in to immediate cleanup on context
closure. If the hangchecking modparam is disabled, so is persistent
context support -- all contexts will be terminated on closure.

We expect this behaviour change to be welcomed by compute users, who
have often been caught between a rock and a hard place. They disable
hangchecking to avoid their kernels being "unfairly" declared hung, but
have also experienced true hangs that the system was then unable to
clean up. Naturally, this leads to bug reports.

Testcase: igt/gem_ctx_persistence
Link: intel/compute-runtime#228
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Michał Winiarski <michal.winiarski@intel.com>
Cc: Jon Bloomfield <jon.bloomfield@intel.com>
Reviewed-by: Jon Bloomfield <jon.bloomfield@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Acked-by: Jason Ekstrand <jason@jlekstrand.net>
Link: https://patchwork.freedesktop.org/patch/msgid/20191029202338.8841-1-chris@chris-wilson.co.uk
(cherry picked from commit a0e0471)

BUG=b:152719649
TEST=Test Graphics/Media/Display use cases

Signed-off-by: Ap, Kamal <kamal.ap@intel.com>
Change-Id: Iccf876394da8eaebfad011c4e45c8b466aec6f53
kitakar5525 pushed a commit to kitakar5525/linux-kernel that referenced this pull request Sep 17, 2020
Our existing behaviour is to allow contexts and their GPU requests to
persist past the point of closure until the requests are complete. This
allows clients to operate in a 'fire-and-forget' manner where they can
setup a rendering pipeline and hand it over to the display server and
immediately exit. As the rendering pipeline is kept alive until
completion, the display server (or other consumer) can use the results
in the future and present them to the user.

The compute model is a little different. They have little to no buffer
sharing between processes as their kernels tend to operate on a
continuous stream, feeding the results back to the client application.
These kernels operate for an indeterminate length of time, with many
clients wishing that the kernel was always running for as long as they
keep feeding in the data, i.e. acting like a DSP.

Not all clients want this persistent "desktop" behaviour and would prefer
that the contexts are cleaned up immediately upon closure. This ensures
that when clients are run without hangchecking (e.g. for compute kernels
of indeterminate runtime), any GPU hang or other unexpected workloads
are terminated with the process and does not continue to hog resources.

The default behaviour for new contexts is the legacy persistence mode,
as some desktop applications are dependent upon the existing behaviour.
New clients will have to opt in to immediate cleanup on context
closure. If the hangchecking modparam is disabled, so is persistent
context support -- all contexts will be terminated on closure.

We expect this behaviour change to be welcomed by compute users, who
have often been caught between a rock and a hard place. They disable
hangchecking to avoid their kernels being "unfairly" declared hung, but
have also experienced true hangs that the system was then unable to
clean up. Naturally, this leads to bug reports.

Testcase: igt/gem_ctx_persistence
Link: intel/compute-runtime#228
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Michał Winiarski <michal.winiarski@intel.com>
Cc: Jon Bloomfield <jon.bloomfield@intel.com>
Reviewed-by: Jon Bloomfield <jon.bloomfield@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Acked-by: Jason Ekstrand <jason@jlekstrand.net>
Link: https://patchwork.freedesktop.org/patch/msgid/20191029202338.8841-1-chris@chris-wilson.co.uk
(cherry picked from commit a0e0471)

BUG=b:152719649
TEST=Test Graphics/Media/Display use cases

Signed-off-by: Ap, Kamal <kamal.ap@intel.com>
Change-Id: Iccf876394da8eaebfad011c4e45c8b466aec6f53
evadot pushed a commit to freebsd/drm-kmod that referenced this pull request Nov 13, 2020
Our existing behaviour is to allow contexts and their GPU requests to
persist past the point of closure until the requests are complete. This
allows clients to operate in a 'fire-and-forget' manner where they can
setup a rendering pipeline and hand it over to the display server and
immediately exit. As the rendering pipeline is kept alive until
completion, the display server (or other consumer) can use the results
in the future and present them to the user.

The compute model is a little different. They have little to no buffer
sharing between processes as their kernels tend to operate on a
continuous stream, feeding the results back to the client application.
These kernels operate for an indeterminate length of time, with many
clients wishing that the kernel was always running for as long as they
keep feeding in the data, i.e. acting like a DSP.

Not all clients want this persistent "desktop" behaviour and would prefer
that the contexts are cleaned up immediately upon closure. This ensures
that when clients are run without hangchecking (e.g. for compute kernels
of indeterminate runtime), any GPU hang or other unexpected workloads
are terminated with the process and does not continue to hog resources.

The default behaviour for new contexts is the legacy persistence mode,
as some desktop applications are dependent upon the existing behaviour.
New clients will have to opt in to immediate cleanup on context
closure. If the hangchecking modparam is disabled, so is persistent
context support -- all contexts will be terminated on closure.

We expect this behaviour change to be welcomed by compute users, who
have often been caught between a rock and a hard place. They disable
hangchecking to avoid their kernels being "unfairly" declared hung, but
have also experienced true hangs that the system was then unable to
clean up. Naturally, this leads to bug reports.

Testcase: igt/gem_ctx_persistence
Link: intel/compute-runtime#228
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Michał Winiarski <michal.winiarski@intel.com>
Cc: Jon Bloomfield <jon.bloomfield@intel.com>
Reviewed-by: Jon Bloomfield <jon.bloomfield@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Acked-by: Jason Ekstrand <jason@jlekstrand.net>
Link: https://patchwork.freedesktop.org/patch/msgid/20191029202338.8841-1-chris@chris-wilson.co.uk
evadot pushed a commit to freebsd/drm-kmod that referenced this pull request Jan 22, 2021
Our existing behaviour is to allow contexts and their GPU requests to
persist past the point of closure until the requests are complete. This
allows clients to operate in a 'fire-and-forget' manner where they can
setup a rendering pipeline and hand it over to the display server and
immediately exit. As the rendering pipeline is kept alive until
completion, the display server (or other consumer) can use the results
in the future and present them to the user.

The compute model is a little different. They have little to no buffer
sharing between processes as their kernels tend to operate on a
continuous stream, feeding the results back to the client application.
These kernels operate for an indeterminate length of time, with many
clients wishing that the kernel was always running for as long as they
keep feeding in the data, i.e. acting like a DSP.

Not all clients want this persistent "desktop" behaviour and would prefer
that the contexts are cleaned up immediately upon closure. This ensures
that when clients are run without hangchecking (e.g. for compute kernels
of indeterminate runtime), any GPU hang or other unexpected workloads
are terminated with the process and does not continue to hog resources.

The default behaviour for new contexts is the legacy persistence mode,
as some desktop applications are dependent upon the existing behaviour.
New clients will have to opt in to immediate cleanup on context
closure. If the hangchecking modparam is disabled, so is persistent
context support -- all contexts will be terminated on closure.

We expect this behaviour change to be welcomed by compute users, who
have often been caught between a rock and a hard place. They disable
hangchecking to avoid their kernels being "unfairly" declared hung, but
have also experienced true hangs that the system was then unable to
clean up. Naturally, this leads to bug reports.

Testcase: igt/gem_ctx_persistence
Link: intel/compute-runtime#228
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Michał Winiarski <michal.winiarski@intel.com>
Cc: Jon Bloomfield <jon.bloomfield@intel.com>
Reviewed-by: Jon Bloomfield <jon.bloomfield@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Acked-by: Jason Ekstrand <jason@jlekstrand.net>
Link: https://patchwork.freedesktop.org/patch/msgid/20191029202338.8841-1-chris@chris-wilson.co.uk
evadot pushed a commit to freebsd/drm-kmod that referenced this pull request Mar 11, 2021
Our existing behaviour is to allow contexts and their GPU requests to
persist past the point of closure until the requests are complete. This
allows clients to operate in a 'fire-and-forget' manner where they can
setup a rendering pipeline and hand it over to the display server and
immediately exit. As the rendering pipeline is kept alive until
completion, the display server (or other consumer) can use the results
in the future and present them to the user.

The compute model is a little different. They have little to no buffer
sharing between processes as their kernels tend to operate on a
continuous stream, feeding the results back to the client application.
These kernels operate for an indeterminate length of time, with many
clients wishing that the kernel was always running for as long as they
keep feeding in the data, i.e. acting like a DSP.

Not all clients want this persistent "desktop" behaviour and would prefer
that the contexts are cleaned up immediately upon closure. This ensures
that when clients are run without hangchecking (e.g. for compute kernels
of indeterminate runtime), any GPU hang or other unexpected workloads
are terminated with the process and does not continue to hog resources.

The default behaviour for new contexts is the legacy persistence mode,
as some desktop applications are dependent upon the existing behaviour.
New clients will have to opt in to immediate cleanup on context
closure. If the hangchecking modparam is disabled, so is persistent
context support -- all contexts will be terminated on closure.

We expect this behaviour change to be welcomed by compute users, who
have often been caught between a rock and a hard place. They disable
hangchecking to avoid their kernels being "unfairly" declared hung, but
have also experienced true hangs that the system was then unable to
clean up. Naturally, this leads to bug reports.

Testcase: igt/gem_ctx_persistence
Link: intel/compute-runtime#228
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Michał Winiarski <michal.winiarski@intel.com>
Cc: Jon Bloomfield <jon.bloomfield@intel.com>
Reviewed-by: Jon Bloomfield <jon.bloomfield@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Acked-by: Jason Ekstrand <jason@jlekstrand.net>
Link: https://patchwork.freedesktop.org/patch/msgid/20191029202338.8841-1-chris@chris-wilson.co.uk
evadot pushed a commit to freebsd/drm-kmod that referenced this pull request May 1, 2021
Our existing behaviour is to allow contexts and their GPU requests to
persist past the point of closure until the requests are complete. This
allows clients to operate in a 'fire-and-forget' manner where they can
setup a rendering pipeline and hand it over to the display server and
immediately exit. As the rendering pipeline is kept alive until
completion, the display server (or other consumer) can use the results
in the future and present them to the user.

The compute model is a little different. They have little to no buffer
sharing between processes as their kernels tend to operate on a
continuous stream, feeding the results back to the client application.
These kernels operate for an indeterminate length of time, with many
clients wishing that the kernel was always running for as long as they
keep feeding in the data, i.e. acting like a DSP.

Not all clients want this persistent "desktop" behaviour and would prefer
that the contexts are cleaned up immediately upon closure. This ensures
that when clients are run without hangchecking (e.g. for compute kernels
of indeterminate runtime), any GPU hang or other unexpected workloads
are terminated with the process and does not continue to hog resources.

The default behaviour for new contexts is the legacy persistence mode,
as some desktop applications are dependent upon the existing behaviour.
New clients will have to opt in to immediate cleanup on context
closure. If the hangchecking modparam is disabled, so is persistent
context support -- all contexts will be terminated on closure.

We expect this behaviour change to be welcomed by compute users, who
have often been caught between a rock and a hard place. They disable
hangchecking to avoid their kernels being "unfairly" declared hung, but
have also experienced true hangs that the system was then unable to
clean up. Naturally, this leads to bug reports.

Testcase: igt/gem_ctx_persistence
Link: intel/compute-runtime#228
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Michał Winiarski <michal.winiarski@intel.com>
Cc: Jon Bloomfield <jon.bloomfield@intel.com>
Reviewed-by: Jon Bloomfield <jon.bloomfield@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Acked-by: Jason Ekstrand <jason@jlekstrand.net>
Link: https://patchwork.freedesktop.org/patch/msgid/20191029202338.8841-1-chris@chris-wilson.co.uk
evadot pushed a commit to freebsd/drm-kmod that referenced this pull request May 22, 2021
Our existing behaviour is to allow contexts and their GPU requests to
persist past the point of closure until the requests are complete. This
allows clients to operate in a 'fire-and-forget' manner where they can
setup a rendering pipeline and hand it over to the display server and
immediately exit. As the rendering pipeline is kept alive until
completion, the display server (or other consumer) can use the results
in the future and present them to the user.

The compute model is a little different. They have little to no buffer
sharing between processes as their kernels tend to operate on a
continuous stream, feeding the results back to the client application.
These kernels operate for an indeterminate length of time, with many
clients wishing that the kernel was always running for as long as they
keep feeding in the data, i.e. acting like a DSP.

Not all clients want this persistent "desktop" behaviour and would prefer
that the contexts are cleaned up immediately upon closure. This ensures
that when clients are run without hangchecking (e.g. for compute kernels
of indeterminate runtime), any GPU hang or other unexpected workloads
are terminated with the process and does not continue to hog resources.

The default behaviour for new contexts is the legacy persistence mode,
as some desktop applications are dependent upon the existing behaviour.
New clients will have to opt in to immediate cleanup on context
closure. If the hangchecking modparam is disabled, so is persistent
context support -- all contexts will be terminated on closure.

We expect this behaviour change to be welcomed by compute users, who
have often been caught between a rock and a hard place. They disable
hangchecking to avoid their kernels being "unfairly" declared hung, but
have also experienced true hangs that the system was then unable to
clean up. Naturally, this leads to bug reports.

Testcase: igt/gem_ctx_persistence
Link: intel/compute-runtime#228
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Michał Winiarski <michal.winiarski@intel.com>
Cc: Jon Bloomfield <jon.bloomfield@intel.com>
Reviewed-by: Jon Bloomfield <jon.bloomfield@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Acked-by: Jason Ekstrand <jason@jlekstrand.net>
Link: https://patchwork.freedesktop.org/patch/msgid/20191029202338.8841-1-chris@chris-wilson.co.uk
evadot pushed a commit to freebsd/drm-kmod that referenced this pull request Jun 7, 2021
Our existing behaviour is to allow contexts and their GPU requests to
persist past the point of closure until the requests are complete. This
allows clients to operate in a 'fire-and-forget' manner where they can
setup a rendering pipeline and hand it over to the display server and
immediately exit. As the rendering pipeline is kept alive until
completion, the display server (or other consumer) can use the results
in the future and present them to the user.

The compute model is a little different. They have little to no buffer
sharing between processes as their kernels tend to operate on a
continuous stream, feeding the results back to the client application.
These kernels operate for an indeterminate length of time, with many
clients wishing that the kernel was always running for as long as they
keep feeding in the data, i.e. acting like a DSP.

Not all clients want this persistent "desktop" behaviour and would prefer
that the contexts are cleaned up immediately upon closure. This ensures
that when clients are run without hangchecking (e.g. for compute kernels
of indeterminate runtime), any GPU hang or other unexpected workloads
are terminated with the process and does not continue to hog resources.

The default behaviour for new contexts is the legacy persistence mode,
as some desktop applications are dependent upon the existing behaviour.
New clients will have to opt in to immediate cleanup on context
closure. If the hangchecking modparam is disabled, so is persistent
context support -- all contexts will be terminated on closure.

We expect this behaviour change to be welcomed by compute users, who
have often been caught between a rock and a hard place. They disable
hangchecking to avoid their kernels being "unfairly" declared hung, but
have also experienced true hangs that the system was then unable to
clean up. Naturally, this leads to bug reports.

Testcase: igt/gem_ctx_persistence
Link: intel/compute-runtime#228
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Michał Winiarski <michal.winiarski@intel.com>
Cc: Jon Bloomfield <jon.bloomfield@intel.com>
Reviewed-by: Jon Bloomfield <jon.bloomfield@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Acked-by: Jason Ekstrand <jason@jlekstrand.net>
Link: https://patchwork.freedesktop.org/patch/msgid/20191029202338.8841-1-chris@chris-wilson.co.uk
wulf7 pushed a commit to wulf7/drm-kmod that referenced this pull request Jun 15, 2021
Our existing behaviour is to allow contexts and their GPU requests to
persist past the point of closure until the requests are complete. This
allows clients to operate in a 'fire-and-forget' manner where they can
setup a rendering pipeline and hand it over to the display server and
immediately exit. As the rendering pipeline is kept alive until
completion, the display server (or other consumer) can use the results
in the future and present them to the user.

The compute model is a little different. They have little to no buffer
sharing between processes as their kernels tend to operate on a
continuous stream, feeding the results back to the client application.
These kernels operate for an indeterminate length of time, with many
clients wishing that the kernel was always running for as long as they
keep feeding in the data, i.e. acting like a DSP.

Not all clients want this persistent "desktop" behaviour and would prefer
that the contexts are cleaned up immediately upon closure. This ensures
that when clients are run without hangchecking (e.g. for compute kernels
of indeterminate runtime), any GPU hang or other unexpected workloads
are terminated with the process and does not continue to hog resources.

The default behaviour for new contexts is the legacy persistence mode,
as some desktop applications are dependent upon the existing behaviour.
New clients will have to opt in to immediate cleanup on context
closure. If the hangchecking modparam is disabled, so is persistent
context support -- all contexts will be terminated on closure.

We expect this behaviour change to be welcomed by compute users, who
have often been caught between a rock and a hard place. They disable
hangchecking to avoid their kernels being "unfairly" declared hung, but
have also experienced true hangs that the system was then unable to
clean up. Naturally, this leads to bug reports.

Testcase: igt/gem_ctx_persistence
Link: intel/compute-runtime#228
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Michał Winiarski <michal.winiarski@intel.com>
Cc: Jon Bloomfield <jon.bloomfield@intel.com>
Reviewed-by: Jon Bloomfield <jon.bloomfield@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Acked-by: Jason Ekstrand <jason@jlekstrand.net>
Link: https://patchwork.freedesktop.org/patch/msgid/20191029202338.8841-1-chris@chris-wilson.co.uk
wulf7 pushed a commit to wulf7/drm-kmod that referenced this pull request Jun 17, 2021
Our existing behaviour is to allow contexts and their GPU requests to
persist past the point of closure until the requests are complete. This
allows clients to operate in a 'fire-and-forget' manner where they can
setup a rendering pipeline and hand it over to the display server and
immediately exit. As the rendering pipeline is kept alive until
completion, the display server (or other consumer) can use the results
in the future and present them to the user.

The compute model is a little different. They have little to no buffer
sharing between processes as their kernels tend to operate on a
continuous stream, feeding the results back to the client application.
These kernels operate for an indeterminate length of time, with many
clients wishing that the kernel was always running for as long as they
keep feeding in the data, i.e. acting like a DSP.

Not all clients want this persistent "desktop" behaviour and would prefer
that the contexts are cleaned up immediately upon closure. This ensures
that when clients are run without hangchecking (e.g. for compute kernels
of indeterminate runtime), any GPU hang or other unexpected workloads
are terminated with the process and does not continue to hog resources.

The default behaviour for new contexts is the legacy persistence mode,
as some desktop applications are dependent upon the existing behaviour.
New clients will have to opt in to immediate cleanup on context
closure. If the hangchecking modparam is disabled, so is persistent
context support -- all contexts will be terminated on closure.

We expect this behaviour change to be welcomed by compute users, who
have often been caught between a rock and a hard place. They disable
hangchecking to avoid their kernels being "unfairly" declared hung, but
have also experienced true hangs that the system was then unable to
clean up. Naturally, this leads to bug reports.

Testcase: igt/gem_ctx_persistence
Link: intel/compute-runtime#228
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Michał Winiarski <michal.winiarski@intel.com>
Cc: Jon Bloomfield <jon.bloomfield@intel.com>
Reviewed-by: Jon Bloomfield <jon.bloomfield@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Acked-by: Jason Ekstrand <jason@jlekstrand.net>
Link: https://patchwork.freedesktop.org/patch/msgid/20191029202338.8841-1-chris@chris-wilson.co.uk
wulf7 pushed a commit to wulf7/drm-kmod that referenced this pull request Jul 7, 2021
Our existing behaviour is to allow contexts and their GPU requests to
persist past the point of closure until the requests are complete. This
allows clients to operate in a 'fire-and-forget' manner where they can
setup a rendering pipeline and hand it over to the display server and
immediately exit. As the rendering pipeline is kept alive until
completion, the display server (or other consumer) can use the results
in the future and present them to the user.

The compute model is a little different. They have little to no buffer
sharing between processes as their kernels tend to operate on a
continuous stream, feeding the results back to the client application.
These kernels operate for an indeterminate length of time, with many
clients wishing that the kernel was always running for as long as they
keep feeding in the data, i.e. acting like a DSP.

Not all clients want this persistent "desktop" behaviour and would prefer
that the contexts are cleaned up immediately upon closure. This ensures
that when clients are run without hangchecking (e.g. for compute kernels
of indeterminate runtime), any GPU hang or other unexpected workloads
are terminated with the process and does not continue to hog resources.

The default behaviour for new contexts is the legacy persistence mode,
as some desktop applications are dependent upon the existing behaviour.
New clients will have to opt in to immediate cleanup on context
closure. If the hangchecking modparam is disabled, so is persistent
context support -- all contexts will be terminated on closure.

We expect this behaviour change to be welcomed by compute users, who
have often been caught between a rock and a hard place. They disable
hangchecking to avoid their kernels being "unfairly" declared hung, but
have also experienced true hangs that the system was then unable to
clean up. Naturally, this leads to bug reports.

Testcase: igt/gem_ctx_persistence
Link: intel/compute-runtime#228
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Michał Winiarski <michal.winiarski@intel.com>
Cc: Jon Bloomfield <jon.bloomfield@intel.com>
Reviewed-by: Jon Bloomfield <jon.bloomfield@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Acked-by: Jason Ekstrand <jason@jlekstrand.net>
Link: https://patchwork.freedesktop.org/patch/msgid/20191029202338.8841-1-chris@chris-wilson.co.uk
evadot pushed a commit to freebsd/drm-kmod that referenced this pull request Jul 7, 2021
Our existing behaviour is to allow contexts and their GPU requests to
persist past the point of closure until the requests are complete. This
allows clients to operate in a 'fire-and-forget' manner where they can
setup a rendering pipeline and hand it over to the display server and
immediately exit. As the rendering pipeline is kept alive until
completion, the display server (or other consumer) can use the results
in the future and present them to the user.

The compute model is a little different. They have little to no buffer
sharing between processes as their kernels tend to operate on a
continuous stream, feeding the results back to the client application.
These kernels operate for an indeterminate length of time, with many
clients wishing that the kernel was always running for as long as they
keep feeding in the data, i.e. acting like a DSP.

Not all clients want this persistent "desktop" behaviour and would prefer
that the contexts are cleaned up immediately upon closure. This ensures
that when clients are run without hangchecking (e.g. for compute kernels
of indeterminate runtime), any GPU hang or other unexpected workloads
are terminated with the process and does not continue to hog resources.

The default behaviour for new contexts is the legacy persistence mode,
as some desktop applications are dependent upon the existing behaviour.
New clients will have to opt in to immediate cleanup on context
closure. If the hangchecking modparam is disabled, so is persistent
context support -- all contexts will be terminated on closure.

We expect this behaviour change to be welcomed by compute users, who
have often been caught between a rock and a hard place. They disable
hangchecking to avoid their kernels being "unfairly" declared hung, but
have also experienced true hangs that the system was then unable to
clean up. Naturally, this leads to bug reports.

Testcase: igt/gem_ctx_persistence
Link: intel/compute-runtime#228
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Michał Winiarski <michal.winiarski@intel.com>
Cc: Jon Bloomfield <jon.bloomfield@intel.com>
Reviewed-by: Jon Bloomfield <jon.bloomfield@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Acked-by: Jason Ekstrand <jason@jlekstrand.net>
Link: https://patchwork.freedesktop.org/patch/msgid/20191029202338.8841-1-chris@chris-wilson.co.uk
jian-yu pushed a commit to jian-yu/drm-tip_HDR that referenced this pull request Feb 16, 2022
…org/drm/drm-intel into drm-next

UAPI Changes:

- Make context persistence optional
  Allow userspace to tie the context lifetime to FD lifetime,
  effectively allowing Ctrl-C killing of a process to also clean
  up the hardware immediately.
  Compute changes: intel/compute-runtime#228
  The compute driver is shipping in Ubuntu. uAPI acked by Mesa folks.

- Put future HW and their uAPIs under STAGING & BROKEN
  Introduces DRM_I915_UNSTABLE Kconfig menu for working on the new
  uAPI for future HW in upstream. We already disable driver loading
  by default the platform is deemed ready. This is a second level
  of protection based on compile time switch (STAGING & BROKEN).

- Under DRM_I915_UNSTABLE: Add the fake lmem region on iGFX
  Fake local memory region on integrated GPU through cmdline:
  memmap=2G$16G i915.fake_lmem_start=0x400000000
  Currently allows testing non-mappable GGTT behavior and running
  kernel selftest for local memory.

Driver Changes:

- Fix Bugzilla #112084: VGA external monitor not working (Ville)
- Add support for half float framebuffers (Ville)
- Add perf support on TGL (Lionel)
- Replace hangcheck by heartbeats (Chris)
- Allow SPT PCH on all AML devices (James)
- Add new CNL PCH for CML platform (Imre)
- Allow 100 ms (Kconfig) for workloads to exit before reset (Chris, Jon, Joonas)
- Forcibly pre-empt a context after 100 ms (Kconfig) of delay  (Chris)
- Make timeslice duration Kconfig configurable (Chris)
- Whitelist PS_(DEPTH|INVOCATION)_COUNT for Tigerlake (Tapani)
- Support creating LMEM objects in kernel (Matt A)
- Adjust the location of RING_MI_MODE in the context image for TGL (Chris)
- Handle AUX interrupts for TC ports (Matt R)
- Add support for devices without mappable GGTT aperture (Daniele)
- Rename "inject_load_failure" module parameter to "inject_probe_failure" (Janusz)
- Handle fused off HDCP, FBC, DMC and DSC (Jose)
- Add support to one DP-MST stream on Tigerlake (Lucas)
- Add HuC firmware (and GuC) for TGL (Daniele)
- Allow ICL+ DSI on any pipe (Ville)

- Check some transcoder timing minimum limits (Ville)
- Don't set queue_priority_hint if we don't kick the submission (Chris)
- Introduce barrier pulses along engines to flush idle/in-flight requests (Chris)
- Drop assertion that ce->pin_mutex guards state updates (Chris)
- Cancel banned contexts on schedule-out (Chris)
- Cancel contexts when hangchecking is disabled (Chris)
- Catch GTT fault errors for gen11+ planes (Matt R)
- Print in debugfs if PSR is not enabled because of sink (Jose)
- Do not set MOCS control values on dgfx (Lucas)
- Setup io-mapping for LMEM (Abdiel)
- Support kernel mapping of LMEM objects (Abdiel)
- Add LMEM selftests (Matt A)
- Initialise PMU spinlock before registering (Chris)
- Clear DKL_TX_PMD_LANE_SUS before program TC voltage swing (Jose)
- Flip interpretation of ips fmin/fmax to max rps (Chris)
- Add VBT compression parameter block definition (Jani)
- Limit the blitter sizes to ensure low preemption latency (Chris)
- Fixup block_size rounding on BLT (Matt A)
- Don't try to place HWS in non-existing mappable region (Michal Wa)
- Don't allocate the ring in stolen if we lack aperture (Matt A)
- Add AUX B & C to DC_OFF_POWER_DOMAINS for Tigerlake (Matt R)
- Avoid HPD poll detect triggering a new detect cycle (Imre)
- Document the userspace fail with possible_crtcs (Ville)
- Drop lrc header page now unused by GuC (Daniele)
- Do not switch aux to TBT mode for non-TC ports (Jose)

- Restructure code to avoid depending on i915 but smaller structs (Chris, Tvrtko, Andi)
- Remove pm park/unpark notifications (Chris)
- Avoid lockdep cross-contamination between object types (Chris)
- Restructure DSC code (Jani)
- Fix dead locking in early workload shadow (Zhenyu)
- Split the legacy submission backend from the common CS ring buffer (Chris)
- Move intel_engine_context_in/out into intel_lrc.c (Tvrtko)
- Describe perf/wakeref structure members in documentation (Anna)
- Update renamed header files names in documentation (Anna)
- Add debugs to distingiush a cd2x update from a full cdclk pll update (Ville)
- Rework atomic global state locking (Ville)
- Allow planes to declare their minimum acceptable cdclk (Ville)
- Eliminate skl_check_pipe_max_pixel_rate() and simplify skl_max_scale() (Ville)
- Making loglevel of PSR2/SU logs same (Ap)
- Capture aux page table error register (Lionel)
- Add is_dgfx to device info (Jose)
- Split gen11_irq_handler to make it shareable (Lucas)
- Encapsulate kconfig constant values inside boolean predicates (Chris)
- Split memory_region initialisation into its own file (Chris)
- Use _PICK() for CHICKEN_TRANS() and add CHICKEN_TRANS_D (Ville)
- Add perf helper macros for comparing with whitelisted registers (Umesh)
- Fix i915_inject_load_error() name to read *_probe_* (Janusz)
- Drop unused AUX register offsets (Matt R)
- Provide more information on DP AUX failures (Matt R)
- Add GAM/SFC instdone to error state (Mika)
- Always track callers to intel_rps_mark_interactive() (Chris)
- Nuke 'mode' argument to intel_get_load_detect_pipe() (Ville)
- Simplify LVDS crtc_mask and pipe_mask setup (Ville)
- Stop frobbing crtc->base.mode (Ville)
- Do s/crtc_mask/pipe_mask/ (Ville)
- Split detaching and removing the vma (Chris)

- Selftest improvements (Chris, Tvrtko, Mika, Matt A, Lionel)
- GuC code improvements (Rob, Andi, Daniele)

- Check against i915_selftest only under CONFIG_SELFTEST (Chris)
- Refine occupancy test in kill_context() (Chris)
- Start kthreads before stopping (Chris)

Signed-off-by: Dave Airlie <airlied@redhat.com>
From: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191101104718.GA14323@jlahtine-desk.ger.corp.intel.com
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants