Skip to content

Commit ae5afd5

Browse files
committed
ml2 added
1 parent c0926b4 commit ae5afd5

File tree

18 files changed

+7290
-21
lines changed

18 files changed

+7290
-21
lines changed

README.md

Lines changed: 50 additions & 21 deletions
Original file line numberDiff line numberDiff line change
@@ -4,8 +4,11 @@
44

55
### Description
66
Welcome to our __Machine Learning__ reposetory! Here you will find various projects from __polynomial regression__ to fully-connected __neural networks__ from scratch, __SVM__ and __Gaussian Processes__!
7+
On Part II, we analize __Independent Component Analysis__, __Graphical Models__, __EM__ and __VAEs__!
78

8-
## [__Lab 1: Linear Regression and Overfitting__](lab1/lab1.ipynb)
9+
# Machine Learning: Part I
10+
11+
## [__Lab 1: Linear Regression and Overfitting__](machine_learning_1/lab1/lab1.ipynb)
912

1013
### Part 1: Polynomial Regression
1114

@@ -16,14 +19,6 @@ Welcome to our __Machine Learning__ reposetory! Here you will find various proje
1619
Polynomial regressions as prediction function, along with the data and the original sine function of various polynomial order.
1720
</p>
1821

19-
<!-- <p align="center">
20-
<img src="readme_imgs/regularized_linear_regression.png" width="410" />
21-
<img src="readme_imgs/best_cross-validated_fit.png" width="400" />
22-
</p> -->
23-
<!-- <p align="center">
24-
<b>Left:</b> Polynomial regression with and without regularization. In regularized polynomial regression, the regularization term acts as a penalty term and has the desired effect of reducing the magnitude of the coefficients.
25-
<b>Right:</b> Best cross-validated fit (M = 5, lambda = 1.0)
26-
</p> -->
2722

2823
### Part 2: Bayesian Linear (Polynomial) Regression
2924
<p align="center">
@@ -38,7 +33,7 @@ Welcome to our __Machine Learning__ reposetory! Here you will find various proje
3833
</p>
3934

4035

41-
## [__Lab 2: Classification__](lab2/lab2.ipynb)
36+
## [__Lab 2: Classification__](machine_learning_1/lab2/lab2.ipynb)
4237

4338
### Part 1: Multiclass logistic regression
4439

@@ -62,8 +57,6 @@ Welcome to our __Machine Learning__ reposetory! Here you will find various proje
6257
</p>
6358

6459

65-
66-
6760
### Part 2: Multilayer perceptron
6861

6962
<p align="center">
@@ -75,13 +68,6 @@ Welcome to our __Machine Learning__ reposetory! Here you will find various proje
7568
Weights of the hidden layer at epoch 0, 4 and 9.
7669
</p>
7770

78-
<!-- <p align="center">
79-
<img src="readme_imgs/activation_functions.png" width="800" />
80-
</p>
81-
<p align="center">
82-
Different activation functions.
83-
</p> -->
84-
8571

8672
### Comparison
8773

@@ -96,7 +82,7 @@ Welcome to our __Machine Learning__ reposetory! Here you will find various proje
9682

9783

9884

99-
## [__Lab 3__: Gaussian Processes and Support Vector Machines](lab3/lab3.ipynb)
85+
## [__Lab 3__: Gaussian Processes and Support Vector Machines](machine_learning_1/lab3/lab3.ipynb)
10086

10187

10288
### Part 1: Gaussian Processes
@@ -119,6 +105,49 @@ Welcome to our __Machine Learning__ reposetory! Here you will find various proje
119105
</p>
120106

121107

108+
109+
# Machine Learning: Part II
110+
111+
## [__Lab 1 - Independent Component Analysis__](machine_learning_2/lab_1/12402559_12141666_lab1.ipynb)
112+
113+
In this assignment, we implement the __Independent Component Analysis__ algorithm,
114+
as described in chapter 34 of David MacKay's book "Information Theory, Inference, and Learning Algorithms".
115+
116+
<p align="center">
117+
<img src="readme_imgs/reconstruction.png" width="1000" />
118+
</p>
119+
<p align="center">
120+
Results of signal reconstruction using different priors and W matrix initialization.
121+
</p>
122+
123+
124+
## [__Lab 2 - Inference in Graphical Models__](machine_learning_2/lab_2/12402559_12141666_lab2.ipynb)
125+
126+
In this assignment, we implement the sum-product and max-sum algorithms for factor graphs over discrete variables.
127+
We implemented these algorithms to a medical graph, in order to infer the possible decease.
128+
129+
<p align="center">
130+
<img src="readme_imgs/bayesian_network.png" width="300" />
131+
</p>
132+
<p align="center">
133+
Medical Directed Graph.
134+
</p>
135+
136+
137+
## [__Lab 3 - Expectation Maximization and Variational Autoencoder__](machine_learning_2/lab_3/12402559_12141666_lab3.ipynb)
138+
139+
In this assignment, we implement the Expectation Maximization (EM) algorithm and Variational Autoencoder (VAE)
140+
on the MNIST dataset of written digits.
141+
142+
<p align="center">
143+
<img src="readme_imgs/vae_manifold.gif" width="400" />
144+
</p>
145+
<p align="center">
146+
VAE's leanred manifold of the MNIST dataset of written digits.
147+
</p>
148+
149+
150+
122151
#### _Acknowledgement - References_
123152

124-
_The majority of the projects come from the lab assignments of the [Machine Learning 1](http://coursecatalogue.uva.nl/xmlpages/page/2018-2019-en/search-course/course/63074) course of the MSc in Artificial Intelligence at the University of Amsterdam._
153+
_The majority of the projects come from the lab assignments of the [Machine Learning 1](http://coursecatalogue.uva.nl/xmlpages/page/2018-2019-en/search-course/course/63074) and [Machine Learning 2](https://coursecatalogue.uva.nl/xmlpages/page/2019-2020-en/search-course/course/73105) courses of the MSc in Artificial Intelligence at the University of Amsterdam._
File renamed without changes.
File renamed without changes.
File renamed without changes.

machine_learning_2/lab_1/12402559_12141666_lab1.ipynb

Lines changed: 2622 additions & 0 deletions
Large diffs are not rendered by default.

machine_learning_2/lab_1/beet.wav

411 KB
Binary file not shown.

machine_learning_2/lab_1/beet9.wav

510 KB
Binary file not shown.
436 KB
Binary file not shown.
Lines changed: 9 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,9 @@
1+
name: ml2labs
2+
channels:
3+
- defaults
4+
dependencies:
5+
- jupyter=1.0.0
6+
- matplotlib=2.2.2
7+
- numpy=1.14.2
8+
- python=3.6.4
9+
- scipy=1.0.0

machine_learning_2/lab_1/mike.wav

374 KB
Binary file not shown.

0 commit comments

Comments
 (0)