Skip to content
6 changes: 6 additions & 0 deletions keras_nlp/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -90,6 +90,12 @@
from keras_nlp.models.xlm_roberta.xlm_roberta_classifier import (
XLMRobertaClassifier,
)
from keras_nlp.models.xlm_roberta.xlm_roberta_masked_lm import (
XLMRobertaMaskedLM,
)
from keras_nlp.models.xlm_roberta.xlm_roberta_masked_lm_preprocessor import (
XLMRobertaMaskedLMPreprocessor,
)
from keras_nlp.models.xlm_roberta.xlm_roberta_preprocessor import (
XLMRobertaPreprocessor,
)
Expand Down
159 changes: 159 additions & 0 deletions keras_nlp/models/xlm_roberta/xlm_roberta_masked_lm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,159 @@
# Copyright 2023 The KerasNLP Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""XLM-RoBERTa masked lm model."""

import copy

from tensorflow import keras

from keras_nlp.api_export import keras_nlp_export
from keras_nlp.layers.masked_lm_head import MaskedLMHead
from keras_nlp.models.roberta.roberta_backbone import roberta_kernel_initializer
from keras_nlp.models.task import Task
from keras_nlp.models.xlm_roberta.xlm_roberta_backbone import XLMRobertaBackbone
from keras_nlp.models.xlm_roberta.xlm_roberta_masked_lm_preprocessor import (
XLMRobertaMaskedLMPreprocessor,
)
from keras_nlp.models.xlm_roberta.xlm_roberta_presets import backbone_presets
from keras_nlp.utils.keras_utils import is_xla_compatible
from keras_nlp.utils.python_utils import classproperty


@keras_nlp_export("keras_nlp.models.XLMRobertaMaskedLM")
class XLMRobertaMaskedLM(Task):
"""An end-to-end XLM-RoBERTa model for the masked language modeling task.

This model will train XLM-RoBERTa on a masked language modeling task.
The model will predict labels for a number of masked tokens in the
input data. For usage of this model with pre-trained weights, see the
`from_preset()` method.

This model can optionally be configured with a `preprocessor` layer, in
which case inputs can be raw string features during `fit()`, `predict()`,
and `evaluate()`. Inputs will be tokenized and dynamically masked during
training and evaluation. This is done by default when creating the model
with `from_preset()`.

Disclaimer: Pre-trained models are provided on an "as is" basis, without
warranties or conditions of any kind. The underlying model is provided by a
third party and subject to a separate license, available
[here](https://github.com/facebookresearch/fairseq).

Args:
backbone: A `keras_nlp.models.XLMRobertaBackbone` instance.
preprocessor: A `keras_nlp.models.XLMRobertaMaskedLMPreprocessor` or
`None`. If `None`, this model will not apply preprocessing, and
inputs should be preprocessed before calling the model.

Example usage:

Raw string inputs and pretrained backbone.
```python
# Create a dataset with raw string features. Labels are inferred.
features = ["The quick brown fox jumped.", "I forgot my homework."]

# Pretrained language model
# on an MLM task.
masked_lm = keras_nlp.models.XLMRobertaMaskedLM.from_preset(
"xlm_roberta_base_multi",
)
masked_lm.fit(x=features, batch_size=2)
```

# Re-compile (e.g., with a new learning rate).
masked_lm.compile(
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer=keras.optimizers.Adam(5e-5),
jit_compile=True,
)
# Access backbone programatically (e.g., to change `trainable`).
masked_lm.backbone.trainable = False
# Fit again.
masked_lm.fit(x=features, batch_size=2)
```

Preprocessed integer data.
```python
# Create a preprocessed dataset where 0 is the mask token.
features = {
"token_ids": tf.constant(
[[1, 2, 0, 4, 0, 6, 7, 8]] * 2, shape=(2, 8)
),
"padding_mask": tf.constant(
[[1, 1, 1, 1, 1, 1, 1, 1]] * 2, shape=(2, 8)
),
"mask_positions": tf.constant([[2, 4]] * 2, shape=(2, 2))
}
# Labels are the original masked values.
labels = [[3, 5]] * 2

masked_lm = keras_nlp.models.XLMRobertaMaskedLM.from_preset(
"xlm_roberta_base_multi",
preprocessor=None,
)

masked_lm.fit(x=features, y=labels, batch_size=2)
```
"""

def __init__(
self,
backbone,
preprocessor=None,
**kwargs,
):
inputs = {
**backbone.input,
"mask_positions": keras.Input(
shape=(None,), dtype="int32", name="mask_positions"
),
}
backbone_outputs = backbone(backbone.input)
outputs = MaskedLMHead(
vocabulary_size=backbone.vocabulary_size,
embedding_weights=backbone.token_embedding.embeddings,
intermediate_activation="gelu",
kernel_initializer=roberta_kernel_initializer(),
name="mlm_head",
)(backbone_outputs, inputs["mask_positions"])

# Instantiate using Functional API Model constructor.
super().__init__(
inputs=inputs,
outputs=outputs,
include_preprocessing=preprocessor is not None,
**kwargs,
)
# All references to `self` below this line
self.backbone = backbone
self.preprocessor = preprocessor

self.compile(
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer=keras.optimizers.Adam(5e-5),
weighted_metrics=keras.metrics.SparseCategoricalAccuracy(),
jit_compile=is_xla_compatible(self),
)

@classproperty
def backbone_cls(cls):
return XLMRobertaBackbone

@classproperty
def preprocessor_cls(cls):
return XLMRobertaMaskedLMPreprocessor

@classproperty
def presets(cls):
return copy.deepcopy(backbone_presets)
184 changes: 184 additions & 0 deletions keras_nlp/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,184 @@
# Copyright 2023 The KerasNLP Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""XLM-RoBERTa masked language model preprocessor layer."""

from absl import logging

from keras_nlp.api_export import keras_nlp_export
from keras_nlp.layers.masked_lm_mask_generator import MaskedLMMaskGenerator
from keras_nlp.models.xlm_roberta.xlm_roberta_preprocessor import (
XLMRobertaPreprocessor,
)
from keras_nlp.utils.keras_utils import pack_x_y_sample_weight


@keras_nlp_export("keras_nlp.models.XLMRobertaMaskedLMPreprocessor")
class XLMRobertaMaskedLMPreprocessor(XLMRobertaPreprocessor):
"""XLM-RoBERTa preprocessing for the masked language modeling task.

This preprocessing layer will prepare inputs for a masked language modeling
task. It is primarily intended for use with the
`keras_nlp.models.XLMRobertaMaskedLM` task model. Preprocessing will occur in
multiple steps.

1. Tokenize any number of input segments using the `tokenizer`.
2. Pack the inputs together with the appropriate `"<s>"`, `"</s>"` and
`"<pad>"` tokens, i.e., adding a single `"<s>"` at the start of the
entire sequence, `"</s></s>"` between each segment,
and a `"</s>"` at the end of the entire sequence.
3. Randomly select non-special tokens to mask, controlled by
`mask_selection_rate`.
4. Construct a `(x, y, sample_weight)` tuple suitable for training with a
`keras_nlp.models.XLMRobertaMaskedLM` task model.

Args:
tokenizer: A `keras_nlp.models.XLMRobertaTokenizer` instance.
sequence_length: int. The length of the packed inputs.
truncate: string. The algorithm to truncate a list of batched segments
to fit within `sequence_length`. The value can be either
`round_robin` or `waterfall`:
- `"round_robin"`: Available space is assigned one token at a
time in a round-robin fashion to the inputs that still need
some, until the limit is reached.
- `"waterfall"`: The allocation of the budget is done using a
"waterfall" algorithm that allocates quota in a
left-to-right manner and fills up the buckets until we run
out of budget. It supports an arbitrary number of segments.
mask_selection_rate: float. The probability an input token will be
dynamically masked.
mask_selection_length: int. The maximum number of masked tokens
in a given sample.
mask_token_rate: float. The probability the a selected token will be
replaced with the mask token.
random_token_rate: float. The probability the a selected token will be
replaced with a random token from the vocabulary. A selected token
will be left as is with probability
`1 - mask_token_rate - random_token_rate`.

Call arguments:
x: A tensor of single string sequences, or a tuple of multiple
tensor sequences to be packed together. Inputs may be batched or
unbatched. For single sequences, raw python inputs will be converted
to tensors. For multiple sequences, pass tensors directly.
y: Label data. Should always be `None` as the layer generates labels.
sample_weight: Label weights. Should always be `None` as the layer
generates label weights.

Examples:
```python
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

nit: we have this style elsewhere (just add one empty line and the sentence below)...

Examples:

Directly calling the layer on data.
...example code block here...

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

# Load the preprocessor from a preset.
preprocessor = keras_nlp.models.XLMRobertaMaskedLMPreprocessor.from_preset(
"xlm_roberta_base_multi"
)

# Tokenize and mask a single sentence.
preprocessor("The quick brown fox jumped.")
# Tokenize and mask a batch of single sentences.
preprocessor(["The quick brown fox jumped.", "Call me Ishmael."])
# Tokenize and mask sentence pairs.
# In this case, always convert input to tensors before calling the layer.
first = tf.constant(["The quick brown fox jumped.", "Call me Ishmael."])
second = tf.constant(["The fox tripped.", "Oh look, a whale."])
preprocessor((first, second))
```

Mapping with `tf.data.Dataset`.
```python
preprocessor = keras_nlp.models.XLMRobertaMaskedLMPreprocessor.from_preset(
"xlm_roberta_base_multi"
)
first = tf.constant(["The quick brown fox jumped.", "Call me Ishmael."])
second = tf.constant(["The fox tripped.", "Oh look, a whale."])

# Map single sentences.
ds = tf.data.Dataset.from_tensor_slices(first)
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)

# Map sentence pairs.
ds = tf.data.Dataset.from_tensor_slices((first, second))
# Watch out for tf.data's default unpacking of tuples here!
# Best to invoke the `preprocessor` directly in this case.
ds = ds.map(
lambda first, second: preprocessor(x=(first, second)),
num_parallel_calls=tf.data.AUTOTUNE,
)
```
```
"""

def __init__(
self,
tokenizer,
sequence_length=512,
truncate="round_robin",
mask_selection_rate=0.15,
mask_selection_length=96,
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I am not sure, is 96 a good default for XLM-R MLM? @abheesht17

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Should be good! Max sequence length of the model is 512, mask rate above is 0.15, so 76 average. 96 should cover almost all samples.

mask_token_rate=0.8,
random_token_rate=0.1,
**kwargs,
):
super().__init__(
tokenizer,
sequence_length=sequence_length,
truncate=truncate,
**kwargs,
)

self.masker = MaskedLMMaskGenerator(
mask_selection_rate=mask_selection_rate,
mask_selection_length=mask_selection_length,
mask_token_rate=mask_token_rate,
random_token_rate=random_token_rate,
vocabulary_size=tokenizer.vocabulary_size(),
mask_token_id=tokenizer.mask_token_id,
unselectable_token_ids=[
tokenizer.start_token_id,
tokenizer.end_token_id,
tokenizer.pad_token_id,
],
)

def get_config(self):
config = super().get_config()
config.update(
{
"mask_selection_rate": self.masker.mask_selection_rate,
"mask_selection_length": self.masker.mask_selection_length,
"mask_token_rate": self.masker.mask_token_rate,
"random_token_rate": self.masker.random_token_rate,
}
)
return config

def call(self, x, y=None, sample_weight=None):
if y is not None or sample_weight is not None:
logging.warning(
f"{self.__class__.__name__} generates `y` and `sample_weight` "
"based on your input data, but your data already contains `y` "
"or `sample_weight`. Your `y` and `sample_weight` will be "
"ignored."
)

x = super().call(x)
token_ids, padding_mask = x["token_ids"], x["padding_mask"]
masker_outputs = self.masker(token_ids)
x = {
"token_ids": masker_outputs["token_ids"],
"padding_mask": padding_mask,
"mask_positions": masker_outputs["mask_positions"],
}
y = masker_outputs["mask_ids"]
sample_weight = masker_outputs["mask_weights"]
return pack_x_y_sample_weight(x, y, sample_weight)
Loading