Skip to content

kharikri/CarND-Kidnapped-Vehicle-Project

 
 

Repository files navigation

Localization of a Vehicle

Introduction

This is the third project in the second term of the Self Driving Car Nanodegree course offered by Udacity. In this project, I implemented a particle filter to localize a vehicle. The initial co-ordinates of the vehicle are given by the GPS data. However, the GPS sensor data is only accurate between 1m to 10m. To localize an autonomous vehicle we need centimeter level accuracy. This is achieved through particle filters.

In this project I implemented a two dimensional particle filter in C++. The inputs to the particle filter are a map of the environment where the vehicle is stranded, some initial GPS information, sensor observation data of the environment and control data (x, y, and velocity of the vehicle) at each time step.

Running the Code

This project involves the Term 2 Simulator which can be downloaded here

Installing uWebSocketIO for Windows 10 was tedious. Here are the steps I went through for websocket installation.

Once the install for uWebSocketIO is complete, the main program can be built and ran by doing the following from the project top directory.

mkdir build
cd build
cmake ..
make
./particle_filter (Make sure you also run the simulator on Windows machine)

Here is the main protcol that main.cpp uses for uWebSocketIO in communicating with the simulator.

INPUT: values provided by the simulator to the c++ program

// sense noisy position data from the simulator

["sense_x"]

["sense_y"]

["sense_theta"]

// get the previous velocity and yaw rate to predict the particle's transitioned state

["previous_velocity"]

["previous_yawrate"]

// receive noisy observation data from the simulator, in a respective list of x/y values

["sense_observations_x"]

["sense_observations_y"]

OUTPUT: values provided by the c++ program to the simulator

// best particle values used for calculating the error evaluation

["best_particle_x"]

["best_particle_y"]

["best_particle_theta"]

//Optional message data used for debugging particle's sensing and associations

// for respective (x,y) sensed positions ID label

["best_particle_associations"]

// for respective (x,y) sensed positions

["best_particle_sense_x"] <= list of sensed x positions

["best_particle_sense_y"] <= list of sensed y positions

Implementing the Particle Filter

The directory structure of this repository is as follows:

root
|   build.sh
|   clean.sh
|   CMakeLists.txt
|   README.md
|   run.sh
|
|___data
|   |   
|   |   map_data.txt
|   
|   
|___src
    |   helper_functions.h
    |   main.cpp
    |   map.h
    |   particle_filter.cpp
    |   particle_filter.h

The only file you should modify is particle_filter.cpp in the src directory. The file contains the scaffolding of a ParticleFilter class and some associated methods. Read through the code, the comments, and the header file particle_filter.h to get a sense for what this code is expected to do.

If you are interested, take a look at src/main.cpp as well. This file contains the code that will actually be running your particle filter and calling the associated methods.

Inputs to the Particle Filter

You can find the inputs to the particle filter in the data directory.

The Map*

map_data.txt includes the position of landmarks (in meters) on an arbitrary Cartesian coordinate system. Each row has three columns

  1. x position
  2. y position
  3. landmark id

All other data the simulator provides, such as observations and controls.

  • Map data provided by 3D Mapping Solutions GmbH.

Success Criteria

If your particle filter passes the current grading code in the simulator (you can make sure you have the current version at any time by doing a git pull), then you should pass!

The things the grading code is looking for are:

  1. Accuracy: your particle filter should localize vehicle position and yaw to within the values specified in the parameters max_translation_error and max_yaw_error in src/main.cpp.

  2. Performance: your particle filter should complete execution within the time of 100 seconds.