Skip to content

Commit 0cac4cb

Browse files
committedNov 28, 2023
feat: Add Polynomial.separable_map'. (#8680)
Co-authored-by: Andrew Yang <36414270+erdOne@users.noreply.github.com>
1 parent df0fd9f commit 0cac4cb

File tree

1 file changed

+6
-2
lines changed

1 file changed

+6
-2
lines changed
 

‎Mathlib/FieldTheory/Separable.lean

+6-2
Original file line numberDiff line numberDiff line change
@@ -283,9 +283,13 @@ theorem separable_iff_derivative_ne_zero {f : F[X]} (hf : Irreducible f) :
283283
natDegree_derivative_lt <| mt derivative_of_natDegree_zero h⟩
284284
#align polynomial.separable_iff_derivative_ne_zero Polynomial.separable_iff_derivative_ne_zero
285285

286-
theorem separable_map (f : F →+* K) {p : F[X]} :
286+
attribute [local instance] Ideal.Quotient.field in
287+
theorem separable_map {S} [CommRing S] [Nontrivial S] (f : F →+* S) {p : F[X]} :
287288
(p.map f).Separable ↔ p.Separable := by
288-
simp_rw [separable_def, derivative_map, isCoprime_map]
289+
refine ⟨fun H ↦ ?_, fun H ↦ H.map⟩
290+
obtain ⟨m, hm⟩ := Ideal.exists_maximal S
291+
have := Separable.map H (f := Ideal.Quotient.mk m)
292+
rwa [map_map, separable_def, derivative_map, isCoprime_map] at this
289293
#align polynomial.separable_map Polynomial.separable_map
290294

291295
theorem separable_prod_X_sub_C_iff' {ι : Sort _} {f : ι → F} {s : Finset ι} :

0 commit comments

Comments
 (0)