Skip to content

Commit

Permalink
feat: Add Polynomial.separable_map'. (#8680)
Browse files Browse the repository at this point in the history
Co-authored-by: Andrew Yang <36414270+erdOne@users.noreply.github.com>
  • Loading branch information
erdOne and erdOne committed Nov 28, 2023
1 parent df0fd9f commit 0cac4cb
Showing 1 changed file with 6 additions and 2 deletions.
8 changes: 6 additions & 2 deletions Mathlib/FieldTheory/Separable.lean
Original file line number Diff line number Diff line change
Expand Up @@ -283,9 +283,13 @@ theorem separable_iff_derivative_ne_zero {f : F[X]} (hf : Irreducible f) :
natDegree_derivative_lt <| mt derivative_of_natDegree_zero h⟩
#align polynomial.separable_iff_derivative_ne_zero Polynomial.separable_iff_derivative_ne_zero

theorem separable_map (f : F →+* K) {p : F[X]} :
attribute [local instance] Ideal.Quotient.field in
theorem separable_map {S} [CommRing S] [Nontrivial S] (f : F →+* S) {p : F[X]} :
(p.map f).Separable ↔ p.Separable := by
simp_rw [separable_def, derivative_map, isCoprime_map]
refine ⟨fun H ↦ ?_, fun H ↦ H.map⟩
obtain ⟨m, hm⟩ := Ideal.exists_maximal S
have := Separable.map H (f := Ideal.Quotient.mk m)
rwa [map_map, separable_def, derivative_map, isCoprime_map] at this
#align polynomial.separable_map Polynomial.separable_map

theorem separable_prod_X_sub_C_iff' {ι : Sort _} {f : ι → F} {s : Finset ι} :
Expand Down

0 comments on commit 0cac4cb

Please sign in to comment.