@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
4
4
Authors: Johannes Hölzl, Jeremy Avigad
5
5
6
6
! This file was ported from Lean 3 source module order.filter.basic
7
- ! leanprover-community/mathlib commit 1126441d6bccf98c81214a0780c73d499f6721fe
7
+ ! leanprover-community/mathlib commit 996b0ff959da753a555053a480f36e5f264d4207
8
8
! Please do not edit these lines, except to modify the commit id
9
9
! if you have ported upstream changes.
10
10
-/
@@ -986,6 +986,9 @@ theorem principal_neBot_iff {s : Set α} : NeBot (𝓟 s) ↔ s.Nonempty :=
986
986
neBot_iff.trans <| (not_congr principal_eq_bot_iff).trans nonempty_iff_ne_empty.symm
987
987
#align filter.principal_ne_bot_iff Filter.principal_neBot_iff
988
988
989
+ alias principal_neBot_iff ↔ _ _root_.Set.Nonempty.principal_neBot
990
+ #align set.nonempty.principal_ne_bot Set.Nonempty.principal_neBot
991
+
989
992
theorem isCompl_principal (s : Set α) : IsCompl (𝓟 s) (𝓟 (sᶜ)) :=
990
993
IsCompl.of_eq (by rw [inf_principal, inter_compl_self, principal_empty]) <| by
991
994
rw [sup_principal, union_compl_self, principal_univ]
@@ -1885,6 +1888,12 @@ theorem mem_comap' : s ∈ comap f l ↔ { y | ∀ ⦃x⦄, f x = y → x ∈ s
1885
1888
fun h => ⟨_, h, fun x hx => hx rfl⟩⟩
1886
1889
#align filter.mem_comap' Filter.mem_comap'
1887
1890
1891
+ /-- RHS form is used, e.g., in the definition of `UniformSpace`. -/
1892
+ lemma mem_comap_prod_mk {x : α} {s : Set β} {F : Filter (α × β)} :
1893
+ s ∈ comap (Prod.mk x) F ↔ {p : α × β | p.fst = x → p.snd ∈ s} ∈ F :=
1894
+ by simp_rw [mem_comap', Prod.ext_iff, and_imp, @forall_swap β (_ = _), forall_eq, eq_comm]
1895
+ #align filter.mem_comap_prod_mk Filter.mem_comap_prod_mk
1896
+
1888
1897
@[simp]
1889
1898
theorem eventually_comap : (∀ᶠ a in comap f l, p a) ↔ ∀ᶠ b in l, ∀ a, f a = b → p a :=
1890
1899
mem_comap'
@@ -2041,6 +2050,9 @@ theorem comap_id : comap id f = f :=
2041
2050
le_antisymm (fun _ => preimage_mem_comap) fun _ ⟨_, ht, hst⟩ => mem_of_superset ht hst
2042
2051
#align filter.comap_id Filter.comap_id
2043
2052
2053
+ theorem comap_id' : comap (fun x => x) f = f := comap_id
2054
+ #align filter.comap_id' Filter.comap_id'
2055
+
2044
2056
theorem comap_const_of_not_mem {x : β} (ht : t ∈ g) (hx : x ∉ t) : comap (fun _ : α => x) g = ⊥ :=
2045
2057
empty_mem_iff_bot.1 <| mem_comap'.2 <| mem_of_superset ht fun _ hx' _ h => hx <| h.symm ▸ hx'
2046
2058
#align filter.comap_const_of_not_mem Filter.comap_const_of_not_mem
0 commit comments