@@ -1023,7 +1023,8 @@ theorem real_inner_self_eq_norm_sq (x : F) : ⟪x, x⟫_ℝ = ‖x‖ ^ 2 := by
1023
1023
rw [pow_two, real_inner_self_eq_norm_mul_norm]
1024
1024
#align real_inner_self_eq_norm_sq real_inner_self_eq_norm_sq
1025
1025
1026
- variable (𝕜)
1026
+ -- Porting note: this was present in mathlib3 but seemingly didn't do anything.
1027
+ -- variable (𝕜)
1027
1028
1028
1029
/-- Expand the square -/
1029
1030
theorem norm_add_sq (x y : E) : ‖x + y‖ ^ 2 = ‖x‖ ^ 2 + 2 * re ⟪x, y⟫ + ‖y‖ ^ 2 := by
@@ -1049,7 +1050,7 @@ alias norm_add_sq_real ← norm_add_pow_two_real
1049
1050
theorem norm_add_mul_self (x y : E) :
1050
1051
‖x + y‖ * ‖x + y‖ = ‖x‖ * ‖x‖ + 2 * re ⟪x, y⟫ + ‖y‖ * ‖y‖ := by
1051
1052
repeat' rw [← sq (M := ℝ)]
1052
- exact norm_add_sq _ _ _
1053
+ exact norm_add_sq _ _
1053
1054
#align norm_add_mul_self norm_add_mul_self
1054
1055
1055
1056
/-- Expand the square -/
@@ -1080,7 +1081,7 @@ alias norm_sub_sq_real ← norm_sub_pow_two_real
1080
1081
theorem norm_sub_mul_self (x y : E) :
1081
1082
‖x - y‖ * ‖x - y‖ = ‖x‖ * ‖x‖ - 2 * re ⟪x, y⟫ + ‖y‖ * ‖y‖ := by
1082
1083
repeat' rw [← sq (M := ℝ)]
1083
- exact norm_sub_sq _ _ _
1084
+ exact norm_sub_sq _ _
1084
1085
#align norm_sub_mul_self norm_sub_mul_self
1085
1086
1086
1087
/-- Expand the square -/
@@ -1098,23 +1099,25 @@ theorem norm_inner_le_norm (x y : E) : ‖⟪x, y⟫‖ ≤ ‖x‖ * ‖y‖ :=
1098
1099
#align norm_inner_le_norm norm_inner_le_norm
1099
1100
1100
1101
theorem nnnorm_inner_le_nnnorm (x y : E) : ‖⟪x, y⟫‖₊ ≤ ‖x‖₊ * ‖y‖₊ :=
1101
- norm_inner_le_norm 𝕜 x y
1102
+ norm_inner_le_norm x y
1102
1103
#align nnnorm_inner_le_nnnorm nnnorm_inner_le_nnnorm
1103
1104
1104
1105
theorem re_inner_le_norm (x y : E) : re ⟪x, y⟫ ≤ ‖x‖ * ‖y‖ :=
1105
- le_trans (re_le_norm (inner x y)) (norm_inner_le_norm 𝕜 x y)
1106
+ le_trans (re_le_norm (inner x y)) (norm_inner_le_norm x y)
1106
1107
#align re_inner_le_norm re_inner_le_norm
1107
1108
1108
1109
/-- Cauchy–Schwarz inequality with norm -/
1109
1110
theorem abs_real_inner_le_norm (x y : F) : |⟪x, y⟫_ℝ| ≤ ‖x‖ * ‖y‖ :=
1110
- (Real.norm_eq_abs _).ge.trans (norm_inner_le_norm ℝ x y)
1111
+ (Real.norm_eq_abs _).ge.trans (norm_inner_le_norm x y)
1111
1112
#align abs_real_inner_le_norm abs_real_inner_le_norm
1112
1113
1113
1114
/-- Cauchy–Schwarz inequality with norm -/
1114
1115
theorem real_inner_le_norm (x y : F) : ⟪x, y⟫_ℝ ≤ ‖x‖ * ‖y‖ :=
1115
1116
le_trans (le_abs_self _) (abs_real_inner_le_norm _ _)
1116
1117
#align real_inner_le_norm real_inner_le_norm
1117
1118
1119
+ variable (𝕜)
1120
+
1118
1121
theorem parallelogram_law_with_norm (x y : E) :
1119
1122
‖x + y‖ * ‖x + y‖ + ‖x - y‖ * ‖x - y‖ = 2 * (‖x‖ * ‖x‖ + ‖y‖ * ‖y‖) := by
1120
1123
simp only [← @inner_self_eq_norm_mul_norm 𝕜]
@@ -1785,7 +1788,7 @@ set_option linter.uppercaseLean3 false in
1785
1788
@[simp]
1786
1789
theorem innerSL_apply_norm (x : E) : ‖innerSL 𝕜 x‖ = ‖x‖ := by
1787
1790
refine'
1788
- le_antisymm ((innerSL 𝕜 x).op_norm_le_bound (norm_nonneg _) fun y => norm_inner_le_norm _ _ _ ) _
1791
+ le_antisymm ((innerSL 𝕜 x).op_norm_le_bound (norm_nonneg _) fun y => norm_inner_le_norm _ _) _
1789
1792
rcases eq_or_ne x 0 with (rfl | h)
1790
1793
· simp
1791
1794
· refine' (mul_le_mul_right (norm_pos_iff.2 h)).mp _
@@ -1864,7 +1867,7 @@ theorem _root_.isBoundedBilinearMap_inner [NormedSpace ℝ E] :
1864
1867
bound :=
1865
1868
⟨1 , zero_lt_one, fun x y => by
1866
1869
rw [one_mul]
1867
- exact norm_inner_le_norm _ x y⟩ }
1870
+ exact norm_inner_le_norm x y⟩ }
1868
1871
#align is_bounded_bilinear_map_inner isBoundedBilinearMap_inner
1869
1872
1870
1873
end Norm
0 commit comments