|
| 1 | +/- |
| 2 | +Copyright (c) 2018 Kenny Lau. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Kenny Lau, Mario Carneiro, Johan Commelin, Amelia Livingston, Anne Baanen |
| 5 | +
|
| 6 | +! This file was ported from Lean 3 source module ring_theory.localization.away.adjoin_root |
| 7 | +! leanprover-community/mathlib commit a7c017d750512a352b623b1824d75da5998457d0 |
| 8 | +! Please do not edit these lines, except to modify the commit id |
| 9 | +! if you have ported upstream changes. |
| 10 | +-/ |
| 11 | +import Mathlib.RingTheory.AdjoinRoot |
| 12 | +import Mathlib.RingTheory.Localization.Away.Basic |
| 13 | + |
| 14 | +/-! |
| 15 | +The `R`-`AlgEquiv` between the localization of `R` away from `r` and |
| 16 | +`R` with an inverse of `r` adjoined. |
| 17 | +-/ |
| 18 | + |
| 19 | +open Polynomial AdjoinRoot Localization |
| 20 | + |
| 21 | +variable {R : Type _} [CommRing R] |
| 22 | + |
| 23 | +-- Porting note: removed `IsLocalization.algHom_subsingleton` due to |
| 24 | +-- `cannot find synthesization order for instance` |
| 25 | +attribute [local instance] AdjoinRoot.algHom_subsingleton |
| 26 | + |
| 27 | +/-- The `R`-`AlgEquiv` between the localization of `R` away from `r` and |
| 28 | + `R` with an inverse of `r` adjoined. -/ |
| 29 | +noncomputable def Localization.awayEquivAdjoin (r : R) : Away r ≃ₐ[R] AdjoinRoot (C r * X - 1) := |
| 30 | + AlgEquiv.ofAlgHom |
| 31 | + { awayLift _ r |
| 32 | + -- Porting note: This argument used to be found automatically, i.e. `_` |
| 33 | + (isUnit_of_mul_eq_one ((algebraMap R (AdjoinRoot (C r * X - 1))) r) (root (C r * X - 1)) |
| 34 | + (root_isInv r)) with |
| 35 | + commutes' := |
| 36 | + IsLocalization.Away.AwayMap.lift_eq r (isUnit_of_mul_eq_one _ _ <| root_isInv r) } |
| 37 | + (liftHom _ (IsLocalization.Away.invSelf r) <| by |
| 38 | + simp only [map_sub, map_mul, aeval_C, aeval_X, IsLocalization.Away.mul_invSelf, aeval_one, |
| 39 | + sub_self]) |
| 40 | + (Subsingleton.elim _ _) |
| 41 | + -- Porting note: fix since `IsLocalization.algHom_subsingleton` is no local instance anymore |
| 42 | + (Subsingleton.elim (h := IsLocalization.algHom_subsingleton (Submonoid.powers r)) _ _) |
| 43 | +#align localization.away_equiv_adjoin Localization.awayEquivAdjoin |
| 44 | + |
| 45 | +theorem IsLocalization.adjoin_inv (r : R) : IsLocalization.Away r (AdjoinRoot <| C r * X - 1) := |
| 46 | + IsLocalization.isLocalization_of_algEquiv _ (Localization.awayEquivAdjoin r) |
| 47 | +#align is_localization.adjoin_inv IsLocalization.adjoin_inv |
| 48 | + |
| 49 | +theorem IsLocalization.Away.finitePresentation (r : R) {S} [CommRing S] [Algebra R S] |
| 50 | + [IsLocalization.Away r S] : Algebra.FinitePresentation R S := |
| 51 | + (AdjoinRoot.finitePresentation _).equiv <| |
| 52 | + (Localization.awayEquivAdjoin r).symm.trans <| IsLocalization.algEquiv (Submonoid.powers r) _ _ |
| 53 | +#align is_localization.away.finite_presentation IsLocalization.Away.finitePresentation |
0 commit comments