@@ -728,9 +728,10 @@ measures of corresponding sets (images or preimages) have equal measures and fun
728
728
729
729
section MeasurePreserving
730
730
731
- theorem measurePreserving_piEquivPiSubtypeProd {ι : Type u} {α : ι → Type v} [Fintype ι]
732
- {m : ∀ i, MeasurableSpace (α i)} (μ : ∀ i, Measure (α i)) [∀ i, SigmaFinite (μ i)]
733
- (p : ι → Prop ) [DecidablePred p] :
731
+ variable {m : ∀ i, MeasurableSpace (α i)} (μ : ∀ i, Measure (α i)) [∀ i, SigmaFinite (μ i)]
732
+ variable [Fintype ι']
733
+
734
+ theorem measurePreserving_piEquivPiSubtypeProd (p : ι → Prop ) [DecidablePred p] :
734
735
MeasurePreserving (MeasurableEquiv.piEquivPiSubtypeProd α p) (Measure.pi μ)
735
736
((Measure.pi fun i : Subtype p => μ i).prod (Measure.pi fun i => μ i)) := by
736
737
set e := (MeasurableEquiv.piEquivPiSubtypeProd α p).symm
@@ -743,12 +744,53 @@ theorem measurePreserving_piEquivPiSubtypeProd {ι : Type u} {α : ι → Type v
743
744
exact Fintype.prod_subtype_mul_prod_subtype p fun i => μ i (s i)
744
745
#align measure_theory.measure_preserving_pi_equiv_pi_subtype_prod MeasureTheory.measurePreserving_piEquivPiSubtypeProd
745
746
746
- theorem volume_preserving_piEquivPiSubtypeProd {ι : Type *} (α : ι → Type *) [Fintype ι]
747
+ theorem volume_preserving_piEquivPiSubtypeProd (α : ι → Type *)
747
748
[∀ i, MeasureSpace (α i)] [∀ i, SigmaFinite (volume : Measure (α i))] (p : ι → Prop )
748
749
[DecidablePred p] : MeasurePreserving (MeasurableEquiv.piEquivPiSubtypeProd α p) :=
749
750
measurePreserving_piEquivPiSubtypeProd (fun _ => volume) p
750
751
#align measure_theory.volume_preserving_pi_equiv_pi_subtype_prod MeasureTheory.volume_preserving_piEquivPiSubtypeProd
751
752
753
+ theorem measurePreserving_piCongrLeft (f : ι' ≃ ι) :
754
+ MeasurePreserving (MeasurableEquiv.piCongrLeft α f)
755
+ (Measure.pi fun i' => μ (f i')) (Measure.pi μ) where
756
+ measurable := (MeasurableEquiv.piCongrLeft α f).measurable
757
+ map_eq := by
758
+ refine' (pi_eq fun s _ => _).symm
759
+ rw [MeasurableEquiv.map_apply, MeasurableEquiv.coe_piCongrLeft f,
760
+ Equiv.piCongrLeft_preimage_univ_pi, pi_pi _ _, f.prod_comp (fun i => μ i (s i))]
761
+
762
+ theorem volume_measurePreserving_piCongrLeft (α : ι → Type *) (f : ι' ≃ ι)
763
+ [∀ i, MeasureSpace (α i)] [∀ i, SigmaFinite (volume : Measure (α i))] :
764
+ MeasurePreserving (MeasurableEquiv.piCongrLeft α f) volume volume :=
765
+ measurePreserving_piCongrLeft (fun _ ↦ volume) f
766
+
767
+ theorem measurePreserving_sumPiEquivProdPi_symm {π : ι ⊕ ι' → Type *} [∀ i, MeasurableSpace (π i)]
768
+ (μ : ∀ i, Measure (π i)) [∀ i, SigmaFinite (μ i)] :
769
+ MeasurePreserving (MeasurableEquiv.sumPiEquivProdPi π).symm
770
+ ((Measure.pi fun i => μ (.inl i)).prod (Measure.pi fun i => μ (.inr i))) (Measure.pi μ) where
771
+ measurable := (MeasurableEquiv.sumPiEquivProdPi π).symm.measurable
772
+ map_eq := by
773
+ refine' (pi_eq fun s _ => _).symm
774
+ simp_rw [MeasurableEquiv.map_apply, MeasurableEquiv.coe_sumPiEquivProdPi_symm,
775
+ Equiv.sumPiEquivProdPi_symm_preimage_univ_pi, Measure.prod_prod, Measure.pi_pi,
776
+ Fintype.prod_sum_type]
777
+
778
+ theorem volume_measurePreserving_sumPiEquivProdPi_symm (π : ι ⊕ ι' → Type *)
779
+ [∀ i, MeasureSpace (π i)] [∀ i, SigmaFinite (volume : Measure (π i))] :
780
+ MeasurePreserving (MeasurableEquiv.sumPiEquivProdPi π).symm volume volume :=
781
+ measurePreserving_sumPiEquivProdPi_symm (fun _ ↦ volume)
782
+
783
+ theorem measurePreserving_sumPiEquivProdPi {π : ι ⊕ ι' → Type *} [∀ i, MeasurableSpace (π i)]
784
+ (μ : ∀ i, Measure (π i)) [∀ i, SigmaFinite (μ i)] :
785
+ MeasurePreserving (MeasurableEquiv.sumPiEquivProdPi π)
786
+ (Measure.pi μ) ((Measure.pi fun i => μ (.inl i)).prod (Measure.pi fun i => μ (.inr i))) :=
787
+ measurePreserving_sumPiEquivProdPi_symm μ |>.symm
788
+
789
+ theorem volume_measurePreserving_sumPiEquivProdPi (π : ι ⊕ ι' → Type *)
790
+ [∀ i, MeasureSpace (π i)] [∀ i, SigmaFinite (volume : Measure (π i))] :
791
+ MeasurePreserving (MeasurableEquiv.sumPiEquivProdPi π) volume volume :=
792
+ measurePreserving_sumPiEquivProdPi (fun _ ↦ volume)
793
+
752
794
theorem measurePreserving_piFinSuccAboveEquiv {n : ℕ} {α : Fin (n + 1 ) → Type u}
753
795
{m : ∀ i, MeasurableSpace (α i)} (μ : ∀ i, Measure (α i)) [∀ i, SigmaFinite (μ i)]
754
796
(i : Fin (n + 1 )) :
0 commit comments