Skip to content

Commit 5cd26e5

Browse files
committed
feat: Compare card of subgroup to card of group (#5347)
Includes new lemmas, one that shows that the cardinality of a subgroup is at most the cardinality of the ambient group, and others which shows that the cardinality of the top group is equal to that of the ambient group, and that in fact this is iff. Co-authored-by: Floris van Doorn
1 parent 4ebd604 commit 5cd26e5

File tree

1 file changed

+13
-0
lines changed

1 file changed

+13
-0
lines changed

Mathlib/GroupTheory/Subgroup/Finite.lean

Lines changed: 13 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -128,6 +128,11 @@ theorem card_bot {_ : Fintype (⊥ : Subgroup G)} : Fintype.card (⊥ : Subgroup
128128
#align subgroup.card_bot Subgroup.card_bot
129129
#align add_subgroup.card_bot AddSubgroup.card_bot
130130

131+
@[to_additive]
132+
theorem card_top [Fintype G] : Fintype.card (⊤ : Subgroup G) = Fintype.card G := by
133+
rw [Fintype.card_eq]
134+
exact Nonempty.intro Subgroup.topEquiv.toEquiv
135+
131136
@[to_additive]
132137
theorem eq_top_of_card_eq [Fintype H] [Fintype G] (h : Fintype.card H = Fintype.card G) :
133138
H = ⊤ := by
@@ -138,6 +143,10 @@ theorem eq_top_of_card_eq [Fintype H] [Fintype G] (h : Fintype.card H = Fintype.
138143
#align subgroup.eq_top_of_card_eq Subgroup.eq_top_of_card_eq
139144
#align add_subgroup.eq_top_of_card_eq AddSubgroup.eq_top_of_card_eq
140145

146+
@[to_additive (attr := simp)]
147+
theorem card_eq_iff_eq_top [Fintype H] [Fintype G] : Fintype.card H = Fintype.card G ↔ H = ⊤ :=
148+
Iff.intro (eq_top_of_card_eq H) (fun h ↦ by simpa only [h] using card_top)
149+
141150
@[to_additive]
142151
theorem eq_top_of_le_card [Fintype H] [Fintype G] (h : Fintype.card G ≤ Fintype.card H) : H = ⊤ :=
143152
eq_top_of_card_eq H
@@ -173,6 +182,10 @@ theorem one_lt_card_iff_ne_bot [Fintype H] : 1 < Fintype.card H ↔ H ≠ ⊥ :=
173182
#align subgroup.one_lt_card_iff_ne_bot Subgroup.one_lt_card_iff_ne_bot
174183
#align add_subgroup.pos_card_iff_ne_bot AddSubgroup.one_lt_card_iff_ne_bot
175184

185+
@[to_additive]
186+
theorem card_le_card_group [Fintype G] [Fintype H] : Fintype.card H ≤ Fintype.card G :=
187+
Fintype.card_le_of_injective _ Subtype.coe_injective
188+
176189
end Subgroup
177190

178191
namespace Subgroup

0 commit comments

Comments
 (0)