@@ -1132,25 +1132,29 @@ variable [NontriviallyNormedField π] [SeminormedRing π] [AddCommGroup E] [
1132
1132
1133
1133
variable [Module π E]
1134
1134
1135
- theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
1136
- (hr : 0 < r) (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
1135
+ theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E}
1136
+ {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) : ContinuousAt p 0 := by
1137
+ let r' := max 1 r
1138
+ have hr' : 0 < r' := lt_max_of_lt_left one_pos
1139
+ have hp' : p.closedBall 0 r' β (π 0 : Filter E) :=
1140
+ mem_of_superset hp (closedBall_mono <| le_max_right _ _)
1137
1141
refine' Metric.nhds_basis_closedBall.tendsto_right_iff.mpr _
1138
1142
intro Ξ΅ hΞ΅
1139
1143
rw [map_zero]
1140
1144
suffices p.closedBall 0 Ξ΅ β (π 0 : Filter E) by
1141
1145
rwa [Seminorm.closedBall_zero_eq_preimage_closedBall] at this
1142
- rcases exists_norm_lt π (div_pos hΞ΅ hr) with β¨k, hk0, hkΞ΅β©
1146
+ rcases exists_norm_lt π (div_pos hΞ΅ hr' ) with β¨k, hk0, hkΞ΅β©
1143
1147
have hk0' := norm_pos_iff.mp hk0
1144
- have := (set_smul_mem_nhds_zero_iff hk0').mpr hp
1148
+ have := (set_smul_mem_nhds_zero_iff hk0').mpr hp'
1145
1149
refine' Filter.mem_of_superset this (smul_set_subset_iff.mpr fun x hx => _)
1146
- rw [mem_closedBall_zero, map_smul_eq_mul, β div_mul_cancel Ξ΅ hr.ne.symm]
1150
+ rw [mem_closedBall_zero, map_smul_eq_mul, β div_mul_cancel Ξ΅ hr' .ne.symm]
1147
1151
gcongr
1148
1152
exact p.mem_closedBall_zero.mp hx
1149
1153
#align seminorm.continuous_at_zero' Seminorm.continuousAt_zero'
1150
1154
1151
1155
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π E] {p : Seminorm π E} {r : β}
1152
- (hr : 0 < r) ( hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
1153
- continuousAt_zero' hr (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
1156
+ (hp : p.ball 0 r β (π 0 : Filter E)) : ContinuousAt p 0 :=
1157
+ continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
1154
1158
#align seminorm.continuous_at_zero Seminorm.continuousAt_zero
1155
1159
1156
1160
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [UniformAddGroup E]
@@ -1171,32 +1175,32 @@ protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [Topologi
1171
1175
#align seminorm.continuous_of_continuous_at_zero Seminorm.continuous_of_continuousAt_zero
1172
1176
1173
1177
protected theorem uniformContinuous [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
1174
- {p : Seminorm π E} {r : β} (hr : 0 < r) ( hp : p.ball 0 r β (π 0 : Filter E)) :
1178
+ {p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) :
1175
1179
UniformContinuous p :=
1176
- Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hr hp)
1180
+ Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
1177
1181
#align seminorm.uniform_continuous Seminorm.uniformContinuous
1178
1182
1179
1183
protected theorem uniform_continuous' [UniformSpace E] [UniformAddGroup E] [ContinuousConstSMul π E]
1180
- {p : Seminorm π E} {r : β} (hr : 0 < r) ( hp : p.closedBall 0 r β (π 0 : Filter E)) :
1184
+ {p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
1181
1185
UniformContinuous p :=
1182
- Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hr hp)
1186
+ Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
1183
1187
#align seminorm.uniform_continuous' Seminorm.uniform_continuous'
1184
1188
1185
1189
protected theorem continuous [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
1186
- {p : Seminorm π E} {r : β} (hr : 0 < r) ( hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
1187
- Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hr hp)
1190
+ {p : Seminorm π E} {r : β} (hp : p.ball 0 r β (π 0 : Filter E)) : Continuous p :=
1191
+ Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
1188
1192
#align seminorm.continuous Seminorm.continuous
1189
1193
1190
1194
protected theorem continuous' [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
1191
- {p : Seminorm π E} {r : β} (hr : 0 < r) ( hp : p.closedBall 0 r β (π 0 : Filter E)) :
1195
+ {p : Seminorm π E} {r : β} (hp : p.closedBall 0 r β (π 0 : Filter E)) :
1192
1196
Continuous p :=
1193
- Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hr hp)
1197
+ Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
1194
1198
#align seminorm.continuous' Seminorm.continuous'
1195
1199
1196
1200
theorem continuous_of_le [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π E]
1197
1201
{p q : Seminorm π E} (hq : Continuous q) (hpq : p β€ q) : Continuous p := by
1198
1202
refine'
1199
- Seminorm.continuous one_pos
1203
+ Seminorm.continuous (r := 1 )
1200
1204
(Filter.mem_of_superset (IsOpen.mem_nhds _ <| q.mem_ball_self zero_lt_one)
1201
1205
(ball_antitone hpq))
1202
1206
rw [ball_zero_eq]
0 commit comments