|
| 1 | +/- |
| 2 | +Copyright (c) 2021 Julian Kuelshammer. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Julian Kuelshammer |
| 5 | +
|
| 6 | +! This file was ported from Lean 3 source module algebra.category.Semigroup.basic |
| 7 | +! leanprover-community/mathlib commit 47b51515e69f59bca5cf34ef456e6000fe205a69 |
| 8 | +! Please do not edit these lines, except to modify the commit id |
| 9 | +! if you have ported upstream changes. |
| 10 | +-/ |
| 11 | +import Mathlib.Algebra.PEmptyInstances |
| 12 | +import Mathlib.Algebra.Hom.Equiv.Basic |
| 13 | +import Mathlib.CategoryTheory.ConcreteCategory.BundledHom |
| 14 | +import Mathlib.CategoryTheory.Functor.ReflectsIso |
| 15 | +import Mathlib.CategoryTheory.Elementwise |
| 16 | + |
| 17 | +/-! |
| 18 | +# Category instances for has_mul, has_add, semigroup and add_semigroup |
| 19 | +
|
| 20 | +We introduce the bundled categories: |
| 21 | +* `MagmaCat` |
| 22 | +* `AddMagmaCat` |
| 23 | +* `SemigroupCat` |
| 24 | +* `AddSemigroupCat` |
| 25 | +along with the relevant forgetful functors between them. |
| 26 | +
|
| 27 | +This closely follows `Mathlib.Algebra.Category.MonCat.Basic`. |
| 28 | +
|
| 29 | +## TODO |
| 30 | +
|
| 31 | +* Limits in these categories |
| 32 | +* free/forgetful adjunctions |
| 33 | +-/ |
| 34 | + |
| 35 | +set_option linter.uppercaseLean3 false |
| 36 | + |
| 37 | +universe u v |
| 38 | + |
| 39 | +open CategoryTheory |
| 40 | + |
| 41 | +/-- The category of magmas and magma morphisms. -/ |
| 42 | +@[to_additive] |
| 43 | +def MagmaCat : Type (u + 1) := |
| 44 | + Bundled Mul |
| 45 | +#align Magma MagmaCat |
| 46 | +#align AddMagma AddMagmaCat |
| 47 | + |
| 48 | +/-- The category of additive magmas and additive magma morphisms. -/ |
| 49 | +add_decl_doc AddMagmaCat |
| 50 | + |
| 51 | +namespace MagmaCat |
| 52 | + |
| 53 | +@[to_additive] |
| 54 | +instance bundledHom : BundledHom @MulHom := |
| 55 | + ⟨@MulHom.toFun, @MulHom.id, @MulHom.comp, |
| 56 | + --Porting note : was `@MulHom.coe_inj` which is deprecated |
| 57 | + by intros; apply @FunLike.coe_injective, by aesop_cat, by aesop_cat⟩ |
| 58 | +#align Magma.bundled_hom MagmaCat.bundledHom |
| 59 | +#align AddMagma.bundled_hom AddMagmaCat.bundledHom |
| 60 | + |
| 61 | +-- Porting note: deriving failed for `ConcreteCategory`, |
| 62 | +-- "default handlers have not been implemented yet" |
| 63 | +-- https://github.com/leanprover-community/mathlib4/issues/5020 |
| 64 | +deriving instance LargeCategory for MagmaCat |
| 65 | +instance instConcreteCategory : ConcreteCategory MagmaCat := BundledHom.concreteCategory MulHom |
| 66 | + |
| 67 | +attribute [to_additive] instMagmaCatLargeCategory instConcreteCategory |
| 68 | + |
| 69 | +@[to_additive] |
| 70 | +instance : CoeSort MagmaCat (Type _) where |
| 71 | + coe X := X.α |
| 72 | + |
| 73 | +-- Porting note : Hinting to Lean that `forget R` and `R` are the same |
| 74 | +unif_hint forget_obj_eq_coe (R : MagmaCat) where ⊢ |
| 75 | + (forget MagmaCat).obj R ≟ R |
| 76 | +unif_hint _root_.AddMagmaCat.forget_obj_eq_coe (R : AddMagmaCat) where ⊢ |
| 77 | + (forget AddMagmaCat).obj R ≟ R |
| 78 | + |
| 79 | +@[to_additive] |
| 80 | +instance (X : MagmaCat) : Mul X := X.str |
| 81 | + |
| 82 | +@[to_additive] |
| 83 | +instance instMulHomClass (X Y : MagmaCat) : MulHomClass (X ⟶ Y) X Y := |
| 84 | + inferInstanceAs <| MulHomClass (X →ₙ* Y) X Y |
| 85 | + |
| 86 | +/-- Construct a bundled `MagmaCat` from the underlying type and typeclass. -/ |
| 87 | +@[to_additive] |
| 88 | +def of (M : Type u) [Mul M] : MagmaCat := |
| 89 | + Bundled.of M |
| 90 | +#align Magma.of MagmaCat.of |
| 91 | +#align AddMagma.of AddMagmaCat.of |
| 92 | + |
| 93 | +/-- Construct a bundled `AddMagmaCat` from the underlying type and typeclass. -/ |
| 94 | +add_decl_doc AddMagmaCat.of |
| 95 | + |
| 96 | +@[to_additive (attr := simp)] |
| 97 | +theorem coe_of (R : Type u) [Mul R] : (MagmaCat.of R : Type u) = R := |
| 98 | + rfl |
| 99 | +#align Magma.coe_of MagmaCat.coe_of |
| 100 | +#align AddMagma.coe_of AddMagmaCat.coe_of |
| 101 | + |
| 102 | +@[to_additive (attr := simp)] |
| 103 | +lemma MulEquiv_coe_eq {X Y : Type _} [Mul X] [Mul Y] (e : X ≃* Y) : |
| 104 | + (@FunLike.coe (MagmaCat.of X ⟶ MagmaCat.of Y) _ (fun _ => (forget MagmaCat).obj _) |
| 105 | + ConcreteCategory.funLike (e : X →ₙ* Y) : X → Y) = ↑e := |
| 106 | + rfl |
| 107 | + |
| 108 | +/-- Typecheck a `MulHom` as a morphism in `MagmaCat`. -/ |
| 109 | +@[to_additive] |
| 110 | +def ofHom {X Y : Type u} [Mul X] [Mul Y] (f : X →ₙ* Y) : of X ⟶ of Y := f |
| 111 | +#align Magma.of_hom MagmaCat.ofHom |
| 112 | +#align AddMagma.of_hom AddMagmaCat.ofHom |
| 113 | + |
| 114 | +/-- Typecheck a `AddHom` as a morphism in `AddMagmaCat`. -/ |
| 115 | +add_decl_doc AddMagmaCat.ofHom |
| 116 | + |
| 117 | +@[to_additive] -- Porting note: simp removed, simpNF says LHS simplifies to itself |
| 118 | +theorem ofHom_apply {X Y : Type u} [Mul X] [Mul Y] (f : X →ₙ* Y) (x : X) : ofHom f x = f x := |
| 119 | + rfl |
| 120 | +#align Magma.of_hom_apply MagmaCat.ofHom_apply |
| 121 | +#align AddMagma.of_hom_apply AddMagmaCat.ofHom_apply |
| 122 | + |
| 123 | +@[to_additive] |
| 124 | +instance : Inhabited MagmaCat := |
| 125 | + ⟨MagmaCat.of PEmpty⟩ |
| 126 | + |
| 127 | +end MagmaCat |
| 128 | + |
| 129 | +/-- The category of semigroups and semigroup morphisms. -/ |
| 130 | +@[to_additive] |
| 131 | +def SemigroupCat : Type (u + 1) := |
| 132 | + Bundled Semigroup |
| 133 | +#align Semigroup SemigroupCat |
| 134 | +#align AddSemigroup AddSemigroupCat |
| 135 | + |
| 136 | +/-- The category of additive semigroups and semigroup morphisms. -/ |
| 137 | +add_decl_doc AddSemigroupCat |
| 138 | + |
| 139 | +namespace SemigroupCat |
| 140 | + |
| 141 | +@[to_additive] |
| 142 | +instance : BundledHom.ParentProjection @Semigroup.toMul := ⟨⟩ |
| 143 | + |
| 144 | +deriving instance LargeCategory for SemigroupCat |
| 145 | + |
| 146 | +-- Porting note: deriving failed for `ConcreteCategory`, |
| 147 | +-- "default handlers have not been implemented yet" |
| 148 | +-- https://github.com/leanprover-community/mathlib4/issues/5020 |
| 149 | +instance instConcreteCategory : ConcreteCategory SemigroupCat := |
| 150 | + BundledHom.concreteCategory (fun _ _ => _) |
| 151 | + |
| 152 | +attribute [to_additive] instSemigroupCatLargeCategory SemigroupCat.instConcreteCategory |
| 153 | + |
| 154 | +@[to_additive] |
| 155 | +instance : CoeSort SemigroupCat (Type _) where |
| 156 | + coe X := X.α |
| 157 | + |
| 158 | +-- Porting note : Hinting to Lean that `forget R` and `R` are the same |
| 159 | +unif_hint forget_obj_eq_coe (R : SemigroupCat) where ⊢ |
| 160 | + (forget SemigroupCat).obj R ≟ R |
| 161 | +unif_hint _root_.AddSemigroupCat.forget_obj_eq_coe (R : AddSemigroupCat) where ⊢ |
| 162 | + (forget AddSemigroupCat).obj R ≟ R |
| 163 | + |
| 164 | +@[to_additive] |
| 165 | +instance (X : SemigroupCat) : Semigroup X := X.str |
| 166 | + |
| 167 | +@[to_additive] |
| 168 | +instance instMulHomClass (X Y : SemigroupCat) : MulHomClass (X ⟶ Y) X Y := |
| 169 | + inferInstanceAs <| MulHomClass (X →ₙ* Y) X Y |
| 170 | + |
| 171 | +/-- Construct a bundled `SemigroupCat` from the underlying type and typeclass. -/ |
| 172 | +@[to_additive] |
| 173 | +def of (M : Type u) [Semigroup M] : SemigroupCat := |
| 174 | + Bundled.of M |
| 175 | +#align Semigroup.of SemigroupCat.of |
| 176 | +#align AddSemigroup.of AddSemigroupCat.of |
| 177 | + |
| 178 | +/-- Construct a bundled `AddSemigroupCat` from the underlying type and typeclass. -/ |
| 179 | +add_decl_doc AddSemigroupCat.of |
| 180 | + |
| 181 | +@[to_additive (attr := simp)] |
| 182 | +theorem coe_of (R : Type u) [Semigroup R] : (SemigroupCat.of R : Type u) = R := |
| 183 | + rfl |
| 184 | +#align Semigroup.coe_of SemigroupCat.coe_of |
| 185 | +#align AddSemigroup.coe_of AddSemigroupCat.coe_of |
| 186 | + |
| 187 | +@[to_additive (attr := simp)] |
| 188 | +lemma MulEquiv_coe_eq {X Y : Type _} [Semigroup X] [Semigroup Y] (e : X ≃* Y) : |
| 189 | + (@FunLike.coe (SemigroupCat.of X ⟶ SemigroupCat.of Y) _ (fun _ => (forget SemigroupCat).obj _) |
| 190 | + ConcreteCategory.funLike (e : X →ₙ* Y) : X → Y) = ↑e := |
| 191 | + rfl |
| 192 | + |
| 193 | +/-- Typecheck a `MulHom` as a morphism in `SemigroupCat`. -/ |
| 194 | +@[to_additive] |
| 195 | +def ofHom {X Y : Type u} [Semigroup X] [Semigroup Y] (f : X →ₙ* Y) : of X ⟶ of Y := |
| 196 | + f |
| 197 | +#align Semigroup.of_hom SemigroupCat.ofHom |
| 198 | +#align AddSemigroup.of_hom AddSemigroupCat.ofHom |
| 199 | + |
| 200 | +/-- Typecheck a `AddHom` as a morphism in `AddSemigroupCat`. -/ |
| 201 | +add_decl_doc AddSemigroupCat.ofHom |
| 202 | + |
| 203 | +@[to_additive] -- Porting note: simp removed, simpNF says LHS simplifies to itself |
| 204 | +theorem ofHom_apply {X Y : Type u} [Semigroup X] [Semigroup Y] (f : X →ₙ* Y) (x : X) : |
| 205 | + ofHom f x = f x := |
| 206 | + rfl |
| 207 | +#align Semigroup.of_hom_apply SemigroupCat.ofHom_apply |
| 208 | +#align AddSemigroup.of_hom_apply AddSemigroupCat.ofHom_apply |
| 209 | + |
| 210 | +@[to_additive] |
| 211 | +instance : Inhabited SemigroupCat := |
| 212 | + ⟨SemigroupCat.of PEmpty⟩ |
| 213 | + |
| 214 | +@[to_additive] |
| 215 | +instance hasForgetToMagmaCat : HasForget₂ SemigroupCat MagmaCat := |
| 216 | + BundledHom.forget₂ _ _ |
| 217 | +#align Semigroup.has_forget_to_Magma SemigroupCat.hasForgetToMagmaCat |
| 218 | +#align AddSemigroup.has_forget_to_AddMagma AddSemigroupCat.hasForgetToAddMagmaCat |
| 219 | + |
| 220 | +end SemigroupCat |
| 221 | + |
| 222 | +variable {X Y : Type u} |
| 223 | + |
| 224 | +section |
| 225 | + |
| 226 | +variable [Mul X] [Mul Y] |
| 227 | + |
| 228 | +/-- Build an isomorphism in the category `MagmaCat` from a `MulEquiv` between `Mul`s. -/ |
| 229 | +@[to_additive (attr := simps) |
| 230 | + "Build an isomorphism in the category `AddMagmaCat` from\nan `AddEquiv` between `Add`s."] |
| 231 | +def MulEquiv.toMagmaCatIso (e : X ≃* Y) : MagmaCat.of X ≅ MagmaCat.of Y where |
| 232 | + hom := e.toMulHom |
| 233 | + inv := e.symm.toMulHom |
| 234 | + hom_inv_id := by |
| 235 | + ext |
| 236 | + simp_rw [comp_apply, toMulHom_eq_coe, MagmaCat.MulEquiv_coe_eq, symm_apply_apply, id_apply] |
| 237 | + |
| 238 | +#align mul_equiv.to_Magma_iso MulEquiv.toMagmaCatIso |
| 239 | +#align add_equiv.to_AddMagma_iso AddEquiv.toAddMagmaCatIso |
| 240 | + |
| 241 | +end |
| 242 | + |
| 243 | +section |
| 244 | + |
| 245 | +variable [Semigroup X] [Semigroup Y] |
| 246 | + |
| 247 | +/-- Build an isomorphism in the category `Semigroup` from a `mul_equiv` between `semigroup`s. -/ |
| 248 | +@[to_additive (attr := simps) |
| 249 | + "Build an isomorphism in the category |
| 250 | + `AddSemigroup` from an `add_equiv` between `add_semigroup`s."] |
| 251 | +def MulEquiv.toSemigroupCatIso (e : X ≃* Y) : SemigroupCat.of X ≅ SemigroupCat.of Y where |
| 252 | + hom := e.toMulHom |
| 253 | + inv := e.symm.toMulHom |
| 254 | +#align mul_equiv.to_Semigroup_iso MulEquiv.toSemigroupCatIso |
| 255 | +#align add_equiv.to_AddSemigroup_iso AddEquiv.toAddSemigroupCatIso |
| 256 | + |
| 257 | +end |
| 258 | + |
| 259 | +namespace CategoryTheory.Iso |
| 260 | + |
| 261 | +/-- Build a `mul_equiv` from an isomorphism in the category `Magma`. -/ |
| 262 | +@[to_additive |
| 263 | + "Build an `add_equiv` from an isomorphism in the category\n`AddMagma`."] |
| 264 | +def magmaCatIsoToMulEquiv {X Y : MagmaCat} (i : X ≅ Y) : X ≃* Y := |
| 265 | + MulHom.toMulEquiv i.hom i.inv i.hom_inv_id i.inv_hom_id |
| 266 | +#align category_theory.iso.Magma_iso_to_mul_equiv CategoryTheory.Iso.magmaCatIsoToMulEquiv |
| 267 | +#align category_theory.iso.AddMagma_iso_to_add_equiv CategoryTheory.Iso.addMagmaCatIsoToAddEquiv |
| 268 | + |
| 269 | +/-- Build a `mul_equiv` from an isomorphism in the category `Semigroup`. -/ |
| 270 | +@[to_additive |
| 271 | + "Build an `add_equiv` from an isomorphism in the category\n`AddSemigroup`."] |
| 272 | +def semigroupCatIsoToMulEquiv {X Y : SemigroupCat} (i : X ≅ Y) : X ≃* Y := |
| 273 | + MulHom.toMulEquiv i.hom i.inv i.hom_inv_id i.inv_hom_id |
| 274 | +#align category_theory.iso.Semigroup_iso_to_mul_equiv CategoryTheory.Iso.semigroupCatIsoToMulEquiv |
| 275 | +#align category_theory.iso.Semigroup_iso_to_add_equiv CategoryTheory.Iso.addSemigroupCatIsoToAddEquiv |
| 276 | + |
| 277 | +end CategoryTheory.Iso |
| 278 | + |
| 279 | +/-- multiplicative equivalences between `has_mul`s are the same as (isomorphic to) isomorphisms |
| 280 | +in `Magma` -/ |
| 281 | +@[to_additive |
| 282 | + "additive equivalences between `has_add`s are the same |
| 283 | + as (isomorphic to) isomorphisms in `AddMagma`"] |
| 284 | +def mulEquivIsoMagmaIso {X Y : Type u} [Mul X] [Mul Y] : |
| 285 | + X ≃* Y ≅ MagmaCat.of X ≅ MagmaCat.of Y where |
| 286 | + hom e := e.toMagmaCatIso |
| 287 | + inv i := i.magmaCatIsoToMulEquiv |
| 288 | +#align mul_equiv_iso_Magma_iso mulEquivIsoMagmaIso |
| 289 | +#align add_equiv_iso_AddMagma_iso addEquivIsoAddMagmaIso |
| 290 | + |
| 291 | +/-- multiplicative equivalences between `semigroup`s are the same as (isomorphic to) isomorphisms |
| 292 | +in `Semigroup` -/ |
| 293 | +@[to_additive |
| 294 | + "additive equivalences between `add_semigroup`s are |
| 295 | + the same as (isomorphic to) isomorphisms in `AddSemigroup`"] |
| 296 | +def mulEquivIsoSemigroupCatIso {X Y : Type u} [Semigroup X] [Semigroup Y] : |
| 297 | + X ≃* Y ≅ SemigroupCat.of X ≅ SemigroupCat.of Y where |
| 298 | + hom e := e.toSemigroupCatIso |
| 299 | + inv i := i.semigroupCatIsoToMulEquiv |
| 300 | +#align mul_equiv_iso_Semigroup_iso mulEquivIsoSemigroupCatIso |
| 301 | +#align add_equiv_iso_AddSemigroup_iso addEquivIsoAddSemigroupCatIso |
| 302 | + |
| 303 | +@[to_additive] |
| 304 | +instance MagmaCat.forgetReflectsIsos : ReflectsIsomorphisms (forget MagmaCat.{u}) where |
| 305 | + reflects {X Y} f _ := by |
| 306 | + skip |
| 307 | + let i := asIso ((forget MagmaCat).map f) |
| 308 | + let e : X ≃* Y := { f, i.toEquiv with } |
| 309 | + exact ⟨(IsIso.of_iso e.toMagmaCatIso).1⟩ |
| 310 | +#align Magma.forget_reflects_isos MagmaCat.forgetReflectsIsos |
| 311 | +#align AddMagma.forget_reflects_isos AddMagmaCat.forgetReflectsIsos |
| 312 | + |
| 313 | +@[to_additive] |
| 314 | +instance SemigroupCat.forgetReflectsIsos : ReflectsIsomorphisms (forget SemigroupCat.{u}) where |
| 315 | + reflects {X Y} f _ := by |
| 316 | + skip |
| 317 | + let i := asIso ((forget SemigroupCat).map f) |
| 318 | + let e : X ≃* Y := { f, i.toEquiv with } |
| 319 | + exact ⟨(IsIso.of_iso e.toSemigroupCatIso).1⟩ |
| 320 | +#align Semigroup.forget_reflects_isos SemigroupCat.forgetReflectsIsos |
| 321 | +#align AddSemigroup.forget_reflects_isos AddSemigroupCat.forgetReflectsIsos |
| 322 | + |
| 323 | +-- porting note: this was added in order to ensure that `forget₂ CommMonCat MonCat` |
| 324 | +-- automatically reflects isomorphisms |
| 325 | +-- we could have used `CategoryTheory.ConcreteCategory.ReflectsIso` alternatively |
| 326 | +@[to_additive] |
| 327 | +instance SemigroupCat.forget₂Full : Full (forget₂ SemigroupCat MagmaCat) where preimage f := f |
| 328 | + |
| 329 | +/-! |
| 330 | +Once we've shown that the forgetful functors to type reflect isomorphisms, |
| 331 | +we automatically obtain that the `forget₂` functors between our concrete categories |
| 332 | +reflect isomorphisms. |
| 333 | +-/ |
| 334 | + |
| 335 | +example : ReflectsIsomorphisms (forget₂ SemigroupCat MagmaCat) := inferInstance |
0 commit comments