@@ -206,37 +206,37 @@ def braidedCategoryOfFaithful {C D : Type*} [Category C] [Category D] [MonoidalC
206206 intros
207207 apply F.map_injective
208208 refine (cancel_epi (F.μ ?_ ?_)).1 ?_
209- rw [Functor.map_comp, ā LaxMonoidalFunctor.μ_natural_left'_assoc , w, Functor.map_comp,
210- reassoc_of% w, braiding_naturality_left_assoc, LaxMonoidalFunctor.μ_natural_right' ]
209+ rw [Functor.map_comp, ā LaxMonoidalFunctor.μ_natural_left_assoc , w, Functor.map_comp,
210+ reassoc_of% w, braiding_naturality_left_assoc, LaxMonoidalFunctor.μ_natural_right]
211211 braiding_naturality_right := by
212212 intros
213213 apply F.map_injective
214214 refine (cancel_epi (F.μ ?_ ?_)).1 ?_
215- rw [Functor.map_comp, ā LaxMonoidalFunctor.μ_natural_right'_assoc , w, Functor.map_comp,
216- reassoc_of% w, braiding_naturality_right_assoc, LaxMonoidalFunctor.μ_natural_left' ]
215+ rw [Functor.map_comp, ā LaxMonoidalFunctor.μ_natural_right_assoc , w, Functor.map_comp,
216+ reassoc_of% w, braiding_naturality_right_assoc, LaxMonoidalFunctor.μ_natural_left]
217217 hexagon_forward := by
218218 intros
219219 apply F.map_injective
220220 refine (cancel_epi (F.μ _ _)).1 ?_
221221 refine (cancel_epi (F.μ _ _ ⷠ_)).1 ?_
222222 rw [Functor.map_comp, Functor.map_comp, Functor.map_comp, Functor.map_comp, ā
223- LaxMonoidalFunctor.μ_natural_left'_assoc , ā comp_whiskerRight_assoc, w,
224- comp_whiskerRight_assoc, LaxMonoidalFunctor.associativity'_assoc ,
225- LaxMonoidalFunctor.associativity'_assoc , ā LaxMonoidalFunctor.μ_natural_right' , ā
223+ LaxMonoidalFunctor.μ_natural_left_assoc , ā comp_whiskerRight_assoc, w,
224+ comp_whiskerRight_assoc, LaxMonoidalFunctor.associativity_assoc ,
225+ LaxMonoidalFunctor.associativity_assoc , ā LaxMonoidalFunctor.μ_natural_right, ā
226226 MonoidalCategory.whiskerLeft_comp_assoc, w, MonoidalCategory.whiskerLeft_comp_assoc,
227227 reassoc_of% w, braiding_naturality_right_assoc,
228- LaxMonoidalFunctor.associativity' , hexagon_forward_assoc]
228+ LaxMonoidalFunctor.associativity, hexagon_forward_assoc]
229229 hexagon_reverse := by
230230 intros
231231 apply F.toFunctor.map_injective
232232 refine (cancel_epi (F.μ _ _)).1 ?_
233233 refine (cancel_epi (_ ā F.μ _ _)).1 ?_
234234 rw [Functor.map_comp, Functor.map_comp, Functor.map_comp, Functor.map_comp, ā
235- LaxMonoidalFunctor.μ_natural_right'_assoc , ā MonoidalCategory.whiskerLeft_comp_assoc, w,
236- MonoidalCategory.whiskerLeft_comp_assoc, LaxMonoidalFunctor.associativity_inv'_assoc ,
237- LaxMonoidalFunctor.associativity_inv'_assoc , ā LaxMonoidalFunctor.μ_natural_left' ,
235+ LaxMonoidalFunctor.μ_natural_right_assoc , ā MonoidalCategory.whiskerLeft_comp_assoc, w,
236+ MonoidalCategory.whiskerLeft_comp_assoc, LaxMonoidalFunctor.associativity_inv_assoc ,
237+ LaxMonoidalFunctor.associativity_inv_assoc , ā LaxMonoidalFunctor.μ_natural_left,
238238 ā comp_whiskerRight_assoc, w, comp_whiskerRight_assoc, reassoc_of% w,
239- braiding_naturality_left_assoc, LaxMonoidalFunctor.associativity_inv' , hexagon_reverse_assoc]
239+ braiding_naturality_left_assoc, LaxMonoidalFunctor.associativity_inv, hexagon_reverse_assoc]
240240#align category_theory.braided_category_of_faithful CategoryTheory.braidedCategoryOfFaithful
241241
242242/-- Pull back a braiding along a fully faithful monoidal functor. -/
@@ -290,7 +290,7 @@ theorem braiding_leftUnitor_auxā (X : C) :
290290 _ = (α_ _ _ _).hom ā« (_ ā (Ī»_ _).hom) ā« (β_ _ _).hom ā« (β_ X _).inv :=
291291 by (slice_lhs 2 3 => rw [ā braiding_naturality_right]); simp only [assoc]
292292 _ = (α_ _ _ _).hom ā« (_ ā (Ī»_ _).hom) := by rw [Iso.hom_inv_id, comp_id]
293- _ = (Ļ_ X).hom ā· š_ C := by rw [triangle' ]
293+ _ = (Ļ_ X).hom ā· š_ C := by rw [triangle]
294294
295295#align category_theory.braiding_left_unitor_auxā CategoryTheory.braiding_leftUnitor_auxā
296296
@@ -323,7 +323,7 @@ theorem braiding_rightUnitor_auxā (X : C) :
323323 _ = (α_ _ _ _).inv ā« ((Ļ_ _).hom ā· _) ā« (β_ _ X).hom ā« (β_ _ _).inv :=
324324 by (slice_lhs 2 3 => rw [ā braiding_naturality_left]); simp only [assoc]
325325 _ = (α_ _ _ _).inv ā« ((Ļ_ _).hom ā· _) := by rw [Iso.hom_inv_id, comp_id]
326- _ = š_ C ā (Ī»_ X).hom := by rw [triangle_assoc_comp_right' ]
326+ _ = š_ C ā (Ī»_ X).hom := by rw [triangle_assoc_comp_right]
327327
328328#align category_theory.braiding_right_unitor_auxā CategoryTheory.braiding_rightUnitor_auxā
329329
@@ -552,8 +552,6 @@ theorem tensor_μ_natural {Xā Xā Yā Yā Uā Uā Vā Vā : C} (fā :
552552 simp only [assoc]
553553#align category_theory.tensor_μ_natural CategoryTheory.tensor_μ_natural
554554
555- attribute [local simp] id_tensorHom tensorHom_id
556-
557555@[reassoc]
558556theorem tensor_μ_natural_left {Xā Xā Yā Yā : C} (fā: Xā ā¶ Yā) (fā : Xā ā¶ Yā) (Zā Zā : C) :
559557 (fā ā fā) ā· (Zā ā Zā) ā« tensor_μ C (Yā, Yā) (Zā, Zā) =
@@ -737,11 +735,10 @@ monoidal opposite, upgraded to a braided functor. -/
737735@[simps!] def mopBraidedFunctor : BraidedFunctor C Cᓹįµįµ where
738736 μ X Y := (β_ (mop X) (mop Y)).hom
739737 ε := š (š_ Cᓹįµįµ)
740- -- `id_tensorHom`, `tensorHom_id` should be simp lemmas when #6307 is merged
741- -- we could then make this fully automated if we mark `yang_baxter` as simp
738+ -- we could make this fully automated if we mark `ā yang_baxter_assoc` as simp
742739 -- should it be marked as such?
743740 associativity X Y Z := by
744- simp [id_tensorHom, tensorHom_id, ā yang_baxter_assoc]
741+ simp [ā yang_baxter_assoc]
745742 __ := mopFunctor C
746743
747744/-- The identity functor on `C`, viewed as a functor from the
@@ -750,7 +747,7 @@ monoidal opposite of `C` to `C`, upgraded to a braided functor. -/
750747 μ X Y := (β_ (unmop X) (unmop Y)).hom
751748 ε := š (š_ C)
752749 associativity X Y Z := by
753- simp [id_tensorHom, tensorHom_id, ā yang_baxter_assoc]
750+ simp [ā yang_baxter_assoc]
754751 __ := unmopFunctor C
755752
756753end MonoidalOpposite
0 commit comments