Skip to content

Commit a2c91ca

Browse files
committed
refactor(PartialHomeomorph): Remove explicit variable (x : M). (#10083)
Instead, supply it as needed. This replaces an explicit argument (x : M) by an implicit `{x : M}` in the following lemmas: - extChartAt_source_mem_nhds' - extChartAt_source_mem_nhdsWithin' - continuousAt_extChartAt' - extChartAt_image_nhd_mem_nhds_of_boundaryless - extChartAt_target_mem_nhdsWithin' - nhdsWithin_extChartAt_target_eq' - continuousAt_extChartAt_symm' - continuousAt_extChartAt_symm'' - map_extChartAt_nhdsWithin_eq_image' - map_extChartAt_nhdsWithin' - map_extChartAt_symm_nhdsWithin' - map_extChartAt_symm_nhdsWithin_range' - extChartAt_preimage_mem_nhdsWithin' - extChartAt_preimage_mem_nhdsWithin - extChartAt_preimage_mem_nhds' - extChartAt_preimage_mem_nhds Co-authored-by: grunweg <grunweg@posteo.de>
1 parent f8b99c7 commit a2c91ca

File tree

5 files changed

+76
-73
lines changed

5 files changed

+76
-73
lines changed

Mathlib/Geometry/Manifold/ContMDiff/Defs.lean

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -438,9 +438,9 @@ theorem contMDiffWithinAt_iff_of_mem_source' {x' : M} {y : M'} (hx : x' ∈ (cha
438438
rw [and_congr_right_iff]
439439
set e := extChartAt I x; set e' := extChartAt I' (f x)
440440
refine' fun hc => contDiffWithinAt_congr_nhds _
441-
rw [← e.image_source_inter_eq', ← map_extChartAt_nhdsWithin_eq_image' I x hx, ←
442-
map_extChartAt_nhdsWithin' I x hx, inter_comm, nhdsWithin_inter_of_mem]
443-
exact hc (extChartAt_source_mem_nhds' _ _ hy)
441+
rw [← e.image_source_inter_eq', ← map_extChartAt_nhdsWithin_eq_image' I hx, ←
442+
map_extChartAt_nhdsWithin' I hx, inter_comm, nhdsWithin_inter_of_mem]
443+
exact hc (extChartAt_source_mem_nhds' _ hy)
444444
#align cont_mdiff_within_at_iff_of_mem_source' contMDiffWithinAt_iff_of_mem_source'
445445

446446
theorem contMDiffAt_iff_of_mem_source {x' : M} {y : M'} (hx : x' ∈ (chartAt H x).source)
@@ -465,7 +465,7 @@ theorem contMDiffWithinAt_iff_target_of_mem_source {x : M} {y : M'}
465465
simp_rw [StructureGroupoid.liftPropWithinAt_self_target]
466466
simp_rw [((chartAt H' y).continuousAt hy).comp_continuousWithinAt hf]
467467
rw [← extChartAt_source I'] at hy
468-
simp_rw [(continuousAt_extChartAt' I' _ hy).comp_continuousWithinAt hf]
468+
simp_rw [(continuousAt_extChartAt' I' hy).comp_continuousWithinAt hf]
469469
rfl
470470
#align cont_mdiff_within_at_iff_target_of_mem_source contMDiffWithinAt_iff_target_of_mem_source
471471

Mathlib/Geometry/Manifold/ContMDiffMFDeriv.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -137,8 +137,8 @@ protected theorem ContMDiffAt.mfderiv {x₀ : N} (f : N → M → M') (g : N →
137137
rw [(extChartAt I (g x₂)).left_inv hx, (extChartAt I' (f x₂ (g x₂))).left_inv h2x]
138138
refine' Filter.EventuallyEq.fderivWithin_eq_nhds _
139139
refine' eventually_of_mem (inter_mem _ _) this
140-
· exact extChartAt_preimage_mem_nhds' _ _ hx₂ (extChartAt_source_mem_nhds I (g x₂))
141-
refine' extChartAt_preimage_mem_nhds' _ _ hx₂ _
140+
· exact extChartAt_preimage_mem_nhds' _ hx₂ (extChartAt_source_mem_nhds I (g x₂))
141+
refine' extChartAt_preimage_mem_nhds' _ hx₂ _
142142
exact h2x₂.continuousAt.preimage_mem_nhds (extChartAt_source_mem_nhds _ _)
143143
/- The conclusion is equal to the following, when unfolding coord_change of
144144
`tangentBundleCore` -/

Mathlib/Geometry/Manifold/IntegralCurve.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -345,7 +345,7 @@ theorem exists_isIntegralCurveAt_of_contMDiffAt
345345
mem_of_mem_of_subset hf3' (extChartAt I x₀).target_subset_preimage_source
346346
have hft2 := mem_extChartAt_source I xₜ
347347
-- express the derivative of the integral curve in the local chart
348-
refine ⟨(continuousAt_extChartAt_symm'' _ _ hf3').comp h.continuousAt,
348+
refine ⟨(continuousAt_extChartAt_symm'' _ hf3').comp h.continuousAt,
349349
HasDerivWithinAt.hasFDerivWithinAt ?_⟩
350350
simp only [mfld_simps, hasDerivWithinAt_univ]
351351
show HasDerivAt ((extChartAt I xₜ ∘ (extChartAt I x₀).symm) ∘ f) (v xₜ) t

Mathlib/Geometry/Manifold/MFDeriv/Basic.lean

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -202,14 +202,14 @@ theorem hasMFDerivWithinAt_inter' (h : t ∈ 𝓝[s] x) :
202202
HasMFDerivWithinAt I I' f (s ∩ t) x f' ↔ HasMFDerivWithinAt I I' f s x f' := by
203203
rw [HasMFDerivWithinAt, HasMFDerivWithinAt, extChartAt_preimage_inter_eq,
204204
hasFDerivWithinAt_inter', continuousWithinAt_inter' h]
205-
exact extChartAt_preimage_mem_nhdsWithin I x h
205+
exact extChartAt_preimage_mem_nhdsWithin I h
206206
#align has_mfderiv_within_at_inter' hasMFDerivWithinAt_inter'
207207

208208
theorem hasMFDerivWithinAt_inter (h : t ∈ 𝓝 x) :
209209
HasMFDerivWithinAt I I' f (s ∩ t) x f' ↔ HasMFDerivWithinAt I I' f s x f' := by
210210
rw [HasMFDerivWithinAt, HasMFDerivWithinAt, extChartAt_preimage_inter_eq, hasFDerivWithinAt_inter,
211211
continuousWithinAt_inter h]
212-
exact extChartAt_preimage_mem_nhds I x h
212+
exact extChartAt_preimage_mem_nhds I h
213213
#align has_mfderiv_within_at_inter hasMFDerivWithinAt_inter
214214

215215
theorem HasMFDerivWithinAt.union (hs : HasMFDerivWithinAt I I' f s x f')
@@ -294,14 +294,14 @@ theorem mdifferentiableWithinAt_inter (ht : t ∈ 𝓝 x) :
294294
MDifferentiableWithinAt I I' f (s ∩ t) x ↔ MDifferentiableWithinAt I I' f s x := by
295295
rw [MDifferentiableWithinAt, MDifferentiableWithinAt, extChartAt_preimage_inter_eq,
296296
differentiableWithinAt_inter, continuousWithinAt_inter ht]
297-
exact extChartAt_preimage_mem_nhds I x ht
297+
exact extChartAt_preimage_mem_nhds I ht
298298
#align mdifferentiable_within_at_inter mdifferentiableWithinAt_inter
299299

300300
theorem mdifferentiableWithinAt_inter' (ht : t ∈ 𝓝[s] x) :
301301
MDifferentiableWithinAt I I' f (s ∩ t) x ↔ MDifferentiableWithinAt I I' f s x := by
302302
rw [MDifferentiableWithinAt, MDifferentiableWithinAt, extChartAt_preimage_inter_eq,
303303
differentiableWithinAt_inter', continuousWithinAt_inter' ht]
304-
exact extChartAt_preimage_mem_nhdsWithin I x ht
304+
exact extChartAt_preimage_mem_nhdsWithin I ht
305305
#align mdifferentiable_within_at_inter' mdifferentiableWithinAt_inter'
306306

307307
theorem MDifferentiableAt.mdifferentiableWithinAt (h : MDifferentiableAt I I' f x) :
@@ -350,7 +350,7 @@ theorem mfderivWithin_univ : mfderivWithin I I' f univ = mfderiv I I' f := by
350350
theorem mfderivWithin_inter (ht : t ∈ 𝓝 x) :
351351
mfderivWithin I I' f (s ∩ t) x = mfderivWithin I I' f s x := by
352352
rw [mfderivWithin, mfderivWithin, extChartAt_preimage_inter_eq, mdifferentiableWithinAt_inter ht,
353-
fderivWithin_inter (extChartAt_preimage_mem_nhds I x ht)]
353+
fderivWithin_inter (extChartAt_preimage_mem_nhds I ht)]
354354
#align mfderiv_within_inter mfderivWithin_inter
355355

356356
theorem mfderivWithin_of_mem_nhds (h : s ∈ 𝓝 x) : mfderivWithin I I' f s x = mfderiv I I' f x := by
@@ -551,7 +551,7 @@ theorem HasMFDerivWithinAt.congr_of_eventuallyEq (h : HasMFDerivWithinAt I I' f
551551
· have :
552552
(extChartAt I x).symm ⁻¹' {y | f₁ y = f y} ∈
553553
𝓝[(extChartAt I x).symm ⁻¹' s ∩ range I] (extChartAt I x) x :=
554-
extChartAt_preimage_mem_nhdsWithin I x h₁
554+
extChartAt_preimage_mem_nhdsWithin I h₁
555555
apply Filter.mem_of_superset this fun y => _
556556
simp (config := { contextual := true }) only [hx, mfld_simps]
557557
· simp only [hx, mfld_simps]
@@ -667,7 +667,7 @@ theorem writtenInExtChartAt_comp (h : ContinuousWithinAt f s x) :
667667
𝓝[(extChartAt I x).symm ⁻¹' s ∩ range I] (extChartAt I x) x := by
668668
apply
669669
@Filter.mem_of_superset _ _ (f ∘ (extChartAt I x).symm ⁻¹' (extChartAt I' (f x)).source) _
670-
(extChartAt_preimage_mem_nhdsWithin I x
670+
(extChartAt_preimage_mem_nhdsWithin I
671671
(h.preimage_mem_nhdsWithin (extChartAt_source_mem_nhds _ _)))
672672
mfld_set_tac
673673
#align written_in_ext_chart_comp writtenInExtChartAt_comp
@@ -685,7 +685,7 @@ theorem HasMFDerivWithinAt.comp (hg : HasMFDerivWithinAt I' I'' g u (f x) g')
685685
have :
686686
(extChartAt I x).symm ⁻¹' (f ⁻¹' (extChartAt I' (f x)).source) ∈
687687
𝓝[(extChartAt I x).symm ⁻¹' s ∩ range I] (extChartAt I x) x :=
688-
extChartAt_preimage_mem_nhdsWithin I x
688+
extChartAt_preimage_mem_nhdsWithin I
689689
(hf.1.preimage_mem_nhdsWithin (extChartAt_source_mem_nhds _ _))
690690
unfold HasMFDerivWithinAt at *
691691
rw [← hasFDerivWithinAt_inter' this, ← extChartAt_preimage_inter_eq] at hf ⊢

0 commit comments

Comments
 (0)