@@ -202,14 +202,14 @@ theorem hasMFDerivWithinAt_inter' (h : t ∈ 𝓝[s] x) :
202
202
HasMFDerivWithinAt I I' f (s ∩ t) x f' ↔ HasMFDerivWithinAt I I' f s x f' := by
203
203
rw [HasMFDerivWithinAt, HasMFDerivWithinAt, extChartAt_preimage_inter_eq,
204
204
hasFDerivWithinAt_inter', continuousWithinAt_inter' h]
205
- exact extChartAt_preimage_mem_nhdsWithin I x h
205
+ exact extChartAt_preimage_mem_nhdsWithin I h
206
206
#align has_mfderiv_within_at_inter' hasMFDerivWithinAt_inter'
207
207
208
208
theorem hasMFDerivWithinAt_inter (h : t ∈ 𝓝 x) :
209
209
HasMFDerivWithinAt I I' f (s ∩ t) x f' ↔ HasMFDerivWithinAt I I' f s x f' := by
210
210
rw [HasMFDerivWithinAt, HasMFDerivWithinAt, extChartAt_preimage_inter_eq, hasFDerivWithinAt_inter,
211
211
continuousWithinAt_inter h]
212
- exact extChartAt_preimage_mem_nhds I x h
212
+ exact extChartAt_preimage_mem_nhds I h
213
213
#align has_mfderiv_within_at_inter hasMFDerivWithinAt_inter
214
214
215
215
theorem HasMFDerivWithinAt.union (hs : HasMFDerivWithinAt I I' f s x f')
@@ -294,14 +294,14 @@ theorem mdifferentiableWithinAt_inter (ht : t ∈ 𝓝 x) :
294
294
MDifferentiableWithinAt I I' f (s ∩ t) x ↔ MDifferentiableWithinAt I I' f s x := by
295
295
rw [MDifferentiableWithinAt, MDifferentiableWithinAt, extChartAt_preimage_inter_eq,
296
296
differentiableWithinAt_inter, continuousWithinAt_inter ht]
297
- exact extChartAt_preimage_mem_nhds I x ht
297
+ exact extChartAt_preimage_mem_nhds I ht
298
298
#align mdifferentiable_within_at_inter mdifferentiableWithinAt_inter
299
299
300
300
theorem mdifferentiableWithinAt_inter' (ht : t ∈ 𝓝[s] x) :
301
301
MDifferentiableWithinAt I I' f (s ∩ t) x ↔ MDifferentiableWithinAt I I' f s x := by
302
302
rw [MDifferentiableWithinAt, MDifferentiableWithinAt, extChartAt_preimage_inter_eq,
303
303
differentiableWithinAt_inter', continuousWithinAt_inter' ht]
304
- exact extChartAt_preimage_mem_nhdsWithin I x ht
304
+ exact extChartAt_preimage_mem_nhdsWithin I ht
305
305
#align mdifferentiable_within_at_inter' mdifferentiableWithinAt_inter'
306
306
307
307
theorem MDifferentiableAt.mdifferentiableWithinAt (h : MDifferentiableAt I I' f x) :
@@ -350,7 +350,7 @@ theorem mfderivWithin_univ : mfderivWithin I I' f univ = mfderiv I I' f := by
350
350
theorem mfderivWithin_inter (ht : t ∈ 𝓝 x) :
351
351
mfderivWithin I I' f (s ∩ t) x = mfderivWithin I I' f s x := by
352
352
rw [mfderivWithin, mfderivWithin, extChartAt_preimage_inter_eq, mdifferentiableWithinAt_inter ht,
353
- fderivWithin_inter (extChartAt_preimage_mem_nhds I x ht)]
353
+ fderivWithin_inter (extChartAt_preimage_mem_nhds I ht)]
354
354
#align mfderiv_within_inter mfderivWithin_inter
355
355
356
356
theorem mfderivWithin_of_mem_nhds (h : s ∈ 𝓝 x) : mfderivWithin I I' f s x = mfderiv I I' f x := by
@@ -551,7 +551,7 @@ theorem HasMFDerivWithinAt.congr_of_eventuallyEq (h : HasMFDerivWithinAt I I' f
551
551
· have :
552
552
(extChartAt I x).symm ⁻¹' {y | f₁ y = f y} ∈
553
553
𝓝[(extChartAt I x).symm ⁻¹' s ∩ range I] (extChartAt I x) x :=
554
- extChartAt_preimage_mem_nhdsWithin I x h₁
554
+ extChartAt_preimage_mem_nhdsWithin I h₁
555
555
apply Filter.mem_of_superset this fun y => _
556
556
simp (config := { contextual := true }) only [hx, mfld_simps]
557
557
· simp only [hx, mfld_simps]
@@ -667,7 +667,7 @@ theorem writtenInExtChartAt_comp (h : ContinuousWithinAt f s x) :
667
667
𝓝[(extChartAt I x).symm ⁻¹' s ∩ range I] (extChartAt I x) x := by
668
668
apply
669
669
@Filter.mem_of_superset _ _ (f ∘ (extChartAt I x).symm ⁻¹' (extChartAt I' (f x)).source) _
670
- (extChartAt_preimage_mem_nhdsWithin I x
670
+ (extChartAt_preimage_mem_nhdsWithin I
671
671
(h.preimage_mem_nhdsWithin (extChartAt_source_mem_nhds _ _)))
672
672
mfld_set_tac
673
673
#align written_in_ext_chart_comp writtenInExtChartAt_comp
@@ -685,7 +685,7 @@ theorem HasMFDerivWithinAt.comp (hg : HasMFDerivWithinAt I' I'' g u (f x) g')
685
685
have :
686
686
(extChartAt I x).symm ⁻¹' (f ⁻¹' (extChartAt I' (f x)).source) ∈
687
687
𝓝[(extChartAt I x).symm ⁻¹' s ∩ range I] (extChartAt I x) x :=
688
- extChartAt_preimage_mem_nhdsWithin I x
688
+ extChartAt_preimage_mem_nhdsWithin I
689
689
(hf.1 .preimage_mem_nhdsWithin (extChartAt_source_mem_nhds _ _))
690
690
unfold HasMFDerivWithinAt at *
691
691
rw [← hasFDerivWithinAt_inter' this, ← extChartAt_preimage_inter_eq] at hf ⊢
0 commit comments