|
| 1 | +/- |
| 2 | +Copyright (c) 2022 Yaël Dillies. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Yaël Dillies |
| 5 | +
|
| 6 | +! This file was ported from Lean 3 source module order.category.Semilat |
| 7 | +! leanprover-community/mathlib commit e8ac6315bcfcbaf2d19a046719c3b553206dac75 |
| 8 | +! Please do not edit these lines, except to modify the commit id |
| 9 | +! if you have ported upstream changes. |
| 10 | +-/ |
| 11 | +import Mathlib.Order.Category.PartOrdCat |
| 12 | +import Mathlib.Order.Hom.Lattice |
| 13 | + |
| 14 | +/-! |
| 15 | +# The categories of semilattices |
| 16 | +
|
| 17 | +This defines `SemilatSupCat` and `SemilatInfCat`, the categories of sup-semilattices with a bottom |
| 18 | +element and inf-semilattices with a top element. |
| 19 | +
|
| 20 | +## References |
| 21 | +
|
| 22 | +* [nLab, *semilattice*](https://ncatlab.org/nlab/show/semilattice) |
| 23 | +-/ |
| 24 | + |
| 25 | +set_option linter.uppercaseLean3 false |
| 26 | + |
| 27 | +universe u |
| 28 | + |
| 29 | +open CategoryTheory |
| 30 | + |
| 31 | +/-- The category of sup-semilattices with a bottom element. -/ |
| 32 | +structure SemilatSupCat : Type (u + 1) where |
| 33 | + protected X : Type u |
| 34 | + [isSemilatticeSup : SemilatticeSup X] |
| 35 | + [isOrderBot : OrderBot.{u} X] |
| 36 | +#align SemilatSup SemilatSupCat |
| 37 | + |
| 38 | +/-- The category of inf-semilattices with a top element. -/ |
| 39 | +structure SemilatInfCat : Type (u + 1) where |
| 40 | + protected X : Type u |
| 41 | + [isSemilatticeInf : SemilatticeInf X] |
| 42 | + [isOrderTop : OrderTop.{u} X] |
| 43 | +#align SemilatInf SemilatInfCat |
| 44 | + |
| 45 | +namespace SemilatSupCat |
| 46 | + |
| 47 | +instance : CoeSort SemilatSupCat (Type _) := |
| 48 | + ⟨SemilatSupCat.X⟩ |
| 49 | + |
| 50 | +attribute [instance] isSemilatticeSup isOrderBot |
| 51 | + |
| 52 | +/-- Construct a bundled `SemilatSupCat` from a `SemilatticeSup`. -/ |
| 53 | +def of (α : Type _) [SemilatticeSup α] [OrderBot α] : SemilatSupCat := |
| 54 | + ⟨α⟩ |
| 55 | +#align SemilatSup.of SemilatSupCat.of |
| 56 | + |
| 57 | +@[simp] |
| 58 | +theorem coe_of (α : Type _) [SemilatticeSup α] [OrderBot α] : ↥(of α) = α := |
| 59 | + rfl |
| 60 | +#align SemilatSup.coe_of SemilatSupCat.coe_of |
| 61 | + |
| 62 | +instance : Inhabited SemilatSupCat := |
| 63 | + ⟨of PUnit⟩ |
| 64 | + |
| 65 | +instance : LargeCategory.{u} SemilatSupCat where |
| 66 | + Hom X Y := SupBotHom X Y |
| 67 | + id X := SupBotHom.id X |
| 68 | + comp f g := g.comp f |
| 69 | + id_comp := SupBotHom.comp_id |
| 70 | + comp_id := SupBotHom.id_comp |
| 71 | + assoc _ _ _ := SupBotHom.comp_assoc _ _ _ |
| 72 | + |
| 73 | +-- Porting note: added |
| 74 | +instance instFunLike (X Y : SemilatSupCat) : FunLike (X ⟶ Y) X (fun _ => Y) := |
| 75 | + show FunLike (SupBotHom X Y) X (fun _ => Y) from inferInstance |
| 76 | + |
| 77 | +instance : ConcreteCategory SemilatSupCat where |
| 78 | + forget := |
| 79 | + { obj := SemilatSupCat.X |
| 80 | + map := FunLike.coe } |
| 81 | + forget_faithful := ⟨(FunLike.coe_injective ·)⟩ |
| 82 | + |
| 83 | +instance hasForgetToPartOrd : HasForget₂ SemilatSupCat PartOrdCat where |
| 84 | + forget₂ := |
| 85 | + -- Porting note: was ⟨X⟩, see https://github.com/leanprover-community/mathlib4/issues/4998 |
| 86 | + { obj := fun X => {α := X} |
| 87 | + -- Porting note: was `map := fun f => f` |
| 88 | + map := fun f => ⟨f.toSupHom, OrderHomClass.mono f.toSupHom⟩ } |
| 89 | +#align SemilatSup.has_forget_to_PartOrd SemilatSupCat.hasForgetToPartOrd |
| 90 | + |
| 91 | +@[simp] |
| 92 | +theorem coe_forget_to_partOrdCat (X : SemilatSupCat) : |
| 93 | + ↥((forget₂ SemilatSupCat PartOrdCat).obj X) = ↥X := |
| 94 | + rfl |
| 95 | +#align SemilatSup.coe_forget_to_PartOrd SemilatSupCat.coe_forget_to_partOrdCat |
| 96 | + |
| 97 | +end SemilatSupCat |
| 98 | + |
| 99 | +namespace SemilatInfCat |
| 100 | + |
| 101 | +instance : CoeSort SemilatInfCat (Type _) := |
| 102 | + ⟨SemilatInfCat.X⟩ |
| 103 | + |
| 104 | +attribute [instance] isSemilatticeInf isOrderTop |
| 105 | + |
| 106 | +/-- Construct a bundled `SemilatInfCat` from a `SemilatticeInf`. -/ |
| 107 | +def of (α : Type _) [SemilatticeInf α] [OrderTop α] : SemilatInfCat := |
| 108 | + ⟨α⟩ |
| 109 | +#align SemilatInf.of SemilatInfCat.of |
| 110 | + |
| 111 | +@[simp] |
| 112 | +theorem coe_of (α : Type _) [SemilatticeInf α] [OrderTop α] : ↥(of α) = α := |
| 113 | + rfl |
| 114 | +#align SemilatInf.coe_of SemilatInfCat.coe_of |
| 115 | + |
| 116 | +instance : Inhabited SemilatInfCat := |
| 117 | + ⟨of PUnit⟩ |
| 118 | + |
| 119 | +instance : LargeCategory.{u} SemilatInfCat where |
| 120 | + Hom X Y := InfTopHom X Y |
| 121 | + id X := InfTopHom.id X |
| 122 | + comp f g := g.comp f |
| 123 | + id_comp := InfTopHom.comp_id |
| 124 | + comp_id := InfTopHom.id_comp |
| 125 | + assoc _ _ _ := InfTopHom.comp_assoc _ _ _ |
| 126 | + |
| 127 | +-- Porting note: added |
| 128 | +instance instFunLike (X Y : SemilatInfCat) : FunLike (X ⟶ Y) X (fun _ => Y) := |
| 129 | + show FunLike (InfTopHom X Y) X (fun _ => Y) from inferInstance |
| 130 | + |
| 131 | +instance : ConcreteCategory SemilatInfCat where |
| 132 | + forget := |
| 133 | + { obj := SemilatInfCat.X |
| 134 | + map := FunLike.coe } |
| 135 | + forget_faithful := ⟨(FunLike.coe_injective ·)⟩ |
| 136 | + |
| 137 | +instance hasForgetToPartOrd : HasForget₂ SemilatInfCat PartOrdCat where |
| 138 | + forget₂ := |
| 139 | + { obj := fun X => ⟨X, inferInstance⟩ |
| 140 | + -- Porting note: was `map := fun f => f` |
| 141 | + map := fun f => ⟨f.toInfHom, OrderHomClass.mono f.toInfHom⟩ } |
| 142 | +#align SemilatInf.has_forget_to_PartOrd SemilatInfCat.hasForgetToPartOrd |
| 143 | + |
| 144 | +@[simp] |
| 145 | +theorem coe_forget_to_partOrdCat (X : SemilatInfCat) : |
| 146 | + ↥((forget₂ SemilatInfCat PartOrdCat).obj X) = ↥X := |
| 147 | + rfl |
| 148 | +#align SemilatInf.coe_forget_to_PartOrd SemilatInfCat.coe_forget_to_partOrdCat |
| 149 | + |
| 150 | +end SemilatInfCat |
| 151 | + |
| 152 | +/-! ### Order dual -/ |
| 153 | + |
| 154 | +namespace SemilatSupCat |
| 155 | + |
| 156 | +/-- Constructs an isomorphism of lattices from an order isomorphism between them. -/ |
| 157 | +@[simps] |
| 158 | +def Iso.mk {α β : SemilatSupCat.{u}} (e : α ≃o β) : α ≅ β where |
| 159 | + hom := (e : SupBotHom _ _) |
| 160 | + inv := (e.symm : SupBotHom _ _) |
| 161 | + hom_inv_id := by ext; exact e.symm_apply_apply _ |
| 162 | + inv_hom_id := by ext; exact e.apply_symm_apply _ |
| 163 | +#align SemilatSup.iso.mk SemilatSupCat.Iso.mk |
| 164 | + |
| 165 | +/-- `order_dual` as a functor. -/ |
| 166 | +@[simps] |
| 167 | +def dual : SemilatSupCat ⥤ SemilatInfCat where |
| 168 | + obj X := SemilatInfCat.of Xᵒᵈ |
| 169 | + map {X Y} := SupBotHom.dual |
| 170 | +#align SemilatSup.dual SemilatSupCat.dual |
| 171 | + |
| 172 | +end SemilatSupCat |
| 173 | + |
| 174 | +namespace SemilatInfCat |
| 175 | + |
| 176 | +/-- Constructs an isomorphism of lattices from an order isomorphism between them. -/ |
| 177 | +@[simps] |
| 178 | +def Iso.mk {α β : SemilatInfCat.{u}} (e : α ≃o β) : α ≅ β where |
| 179 | + hom := (e : InfTopHom _ _) |
| 180 | + inv := (e.symm : InfTopHom _ _) |
| 181 | + hom_inv_id := by ext; exact e.symm_apply_apply _ |
| 182 | + inv_hom_id := by ext; exact e.apply_symm_apply _ |
| 183 | +#align SemilatInf.iso.mk SemilatInfCat.Iso.mk |
| 184 | + |
| 185 | +/-- `OrderDual` as a functor. -/ |
| 186 | +@[simps] |
| 187 | +def dual : SemilatInfCat ⥤ SemilatSupCat where |
| 188 | + obj X := SemilatSupCat.of Xᵒᵈ |
| 189 | + map {X Y} := InfTopHom.dual |
| 190 | +#align SemilatInf.dual SemilatInfCat.dual |
| 191 | + |
| 192 | +end SemilatInfCat |
| 193 | + |
| 194 | +/-- The equivalence between `SemilatSupCat` and `SemilatInfCat` induced by `OrderDual` both ways. -/ |
| 195 | +@[simps functor inverse] |
| 196 | +def SemilatSupCatEquivSemilatInfCat : SemilatSupCat ≌ SemilatInfCat where |
| 197 | + functor := SemilatSupCat.dual |
| 198 | + inverse := SemilatInfCat.dual |
| 199 | + unitIso := NatIso.ofComponents fun X => SemilatSupCat.Iso.mk <| OrderIso.dualDual X |
| 200 | + counitIso := NatIso.ofComponents fun X => SemilatInfCat.Iso.mk <| OrderIso.dualDual X |
| 201 | +#align SemilatSup_equiv_SemilatInf SemilatSupCatEquivSemilatInfCat |
| 202 | + |
| 203 | +theorem SemilatSupCat_dual_comp_forget_to_partOrdCat : |
| 204 | + SemilatSupCat.dual ⋙ forget₂ SemilatInfCat PartOrdCat = |
| 205 | + forget₂ SemilatSupCat PartOrdCat ⋙ PartOrdCat.dual := |
| 206 | + rfl |
| 207 | +#align SemilatSup_dual_comp_forget_to_PartOrd SemilatSupCat_dual_comp_forget_to_partOrdCat |
| 208 | + |
| 209 | +theorem SemilatInfCat_dual_comp_forget_to_partOrdCat : |
| 210 | + SemilatInfCat.dual ⋙ forget₂ SemilatSupCat PartOrdCat = |
| 211 | + forget₂ SemilatInfCat PartOrdCat ⋙ PartOrdCat.dual := |
| 212 | + rfl |
| 213 | +#align SemilatInf_dual_comp_forget_to_PartOrd SemilatInfCat_dual_comp_forget_to_partOrdCat |
0 commit comments