Skip to content

Commit e0ae51d

Browse files
committed
chore: Rename monotonicity of lemmas in modules (#9302)
Fix the names of the lemmas moved in #9241 to match the naming convention.
1 parent 2380f2a commit e0ae51d

File tree

3 files changed

+51
-40
lines changed

3 files changed

+51
-40
lines changed

Mathlib/Algebra/Order/Module/Defs.lean

Lines changed: 45 additions & 34 deletions
Original file line numberDiff line numberDiff line change
@@ -104,6 +104,8 @@ This file acts as a substitute for `Mathlib.Algebra.Order.SMul`. We now need to
104104
* rethink `OrderedSMul`
105105
-/
106106

107+
open OrderDual
108+
107109
variable (α β : Type*)
108110

109111
section Defs
@@ -814,13 +816,13 @@ variable [OrderedAddCommGroup β] [Module α β]
814816
section PosSMulMono
815817
variable [PosSMulMono α β]
816818

817-
lemma smul_le_smul_of_nonpos (h : b₁ ≤ b₂) (ha : a ≤ 0) : a • b₂ ≤ a • b₁ := by
819+
lemma smul_le_smul_of_nonpos_left (h : b₁ ≤ b₂) (ha : a ≤ 0) : a • b₂ ≤ a • b₁ := by
818820
rw [← neg_neg a, neg_smul, neg_smul (-a), neg_le_neg_iff]
819821
exact smul_le_smul_of_nonneg_left h (neg_nonneg_of_nonpos ha)
820-
#align smul_le_smul_of_nonpos smul_le_smul_of_nonpos
822+
#align smul_le_smul_of_nonpos smul_le_smul_of_nonpos_left
821823

822-
lemma antitone_smul_left (ha : a ≤ 0) : Antitone (SMul.smul a : β → β) :=
823-
fun _ _ h => smul_le_smul_of_nonpos h ha
824+
lemma antitone_smul_left (ha : a ≤ 0) : Antitone ((a • ·) : β → β) :=
825+
fun _ _ h ↦ smul_le_smul_of_nonpos_left h ha
824826
#align antitone_smul_left antitone_smul_left
825827

826828
instance PosSMulMono.toSMulPosMono : SMulPosMono α β where
@@ -831,14 +833,14 @@ end PosSMulMono
831833
section PosSMulStrictMono
832834
variable [PosSMulStrictMono α β]
833835

834-
lemma smul_lt_smul_of_neg (hb : b₁ < b₂) (ha : a < 0) : a • b₂ < a • b₁ := by
836+
lemma smul_lt_smul_of_neg_left (hb : b₁ < b₂) (ha : a < 0) : a • b₂ < a • b₁ := by
835837
rw [← neg_neg a, neg_smul, neg_smul (-a), neg_lt_neg_iff]
836838
exact smul_lt_smul_of_pos_left hb (neg_pos_of_neg ha)
837-
#align smul_lt_smul_of_neg smul_lt_smul_of_neg
839+
#align smul_lt_smul_of_neg smul_lt_smul_of_neg_left
838840

839-
lemma strict_anti_smul_left (ha : a < 0) : StrictAnti (SMul.smul a : β → β) :=
840-
fun _ _ h => smul_lt_smul_of_neg h ha
841-
#align strict_anti_smul_left strict_anti_smul_left
841+
lemma strictAnti_smul_left (ha : a < 0) : StrictAnti ((a • ·) : β → β) :=
842+
fun _ _ h ↦ smul_lt_smul_of_neg_left h ha
843+
#align strict_anti_smul_left strictAnti_smul_left
842844

843845
instance PosSMulStrictMono.toSMulPosStrictMono : SMulPosStrictMono α β where
844846
elim _b hb a₁ a₂ ha := by rw [← sub_pos, ← sub_smul]; exact smul_pos (sub_pos.2 ha) hb
@@ -860,30 +862,30 @@ lemma smul_nonneg_of_nonpos_of_nonpos [SMulPosMono α β] (ha : a ≤ 0) (hb : b
860862
smul_nonpos_of_nonpos_of_nonneg (β := βᵒᵈ) ha hb
861863
#align smul_nonneg_of_nonpos_of_nonpos smul_nonneg_of_nonpos_of_nonpos
862864

863-
lemma smul_le_smul_iff_of_neg [PosSMulMono α β] [PosSMulReflectLE α β] (ha : a < 0) :
865+
lemma smul_le_smul_iff_of_neg_left [PosSMulMono α β] [PosSMulReflectLE α β] (ha : a < 0) :
864866
a • b₁ ≤ a • b₂ ↔ b₂ ≤ b₁ := by
865867
rw [← neg_neg a, neg_smul, neg_smul (-a), neg_le_neg_iff]
866868
exact smul_le_smul_iff_of_pos_left (neg_pos_of_neg ha)
867-
#align smul_le_smul_iff_of_neg smul_le_smul_iff_of_neg
869+
#align smul_le_smul_iff_of_neg smul_le_smul_iff_of_neg_left
868870

869871
section PosSMulStrictMono
870872
variable [PosSMulStrictMono α β] [PosSMulReflectLT α β]
871873

872-
lemma smul_lt_smul_iff_of_neg (ha : a < 0) : a • b₁ < a • b₂ ↔ b₂ < b₁ := by
874+
lemma smul_lt_smul_iff_of_neg_left (ha : a < 0) : a • b₁ < a • b₂ ↔ b₂ < b₁ := by
873875
rw [← neg_neg a, neg_smul, neg_smul (-a), neg_lt_neg_iff]
874876
exact smul_lt_smul_iff_of_pos_left (neg_pos_of_neg ha)
875-
#align smul_lt_smul_iff_of_neg smul_lt_smul_iff_of_neg
877+
#align smul_lt_smul_iff_of_neg smul_lt_smul_iff_of_neg_left
876878

877-
lemma smul_pos_iff_of_neg (ha : a < 0) : 0 < a • b ↔ b < 0 := by
878-
simpa only [smul_zero] using smul_lt_smul_iff_of_neg ha (b₁ := (0 : β))
879-
#align smul_pos_iff_of_neg smul_pos_iff_of_neg
879+
lemma smul_pos_iff_of_neg_left (ha : a < 0) : 0 < a • b ↔ b < 0 := by
880+
simpa only [smul_zero] using smul_lt_smul_iff_of_neg_left ha (b₁ := (0 : β))
881+
#align smul_pos_iff_of_neg smul_pos_iff_of_neg_left
880882

881-
alias ⟨_, smul_pos_of_neg_of_neg⟩ := smul_pos_iff_of_neg
883+
alias ⟨_, smul_pos_of_neg_of_neg⟩ := smul_pos_iff_of_neg_left
882884
#align smul_pos_of_neg_of_neg smul_pos_of_neg_of_neg
883885

884-
lemma smul_neg_iff_of_neg (ha : a < 0) : a • b < 00 < b := by
885-
simpa only [smul_zero] using smul_lt_smul_iff_of_neg ha (b₂ := (0 : β))
886-
#align smul_neg_iff_of_neg smul_neg_iff_of_neg
886+
lemma smul_neg_iff_of_neg_left (ha : a < 0) : a • b < 00 < b := by
887+
simpa only [smul_zero] using smul_lt_smul_iff_of_neg_left ha (b₂ := (0 : β))
888+
#align smul_neg_iff_of_neg smul_neg_iff_of_neg_left
887889

888890
end PosSMulStrictMono
889891

@@ -996,35 +998,32 @@ section PosSMulMono
996998
variable [PosSMulMono α β]
997999

9981000
lemma inv_smul_le_iff_of_neg (h : a < 0) : a⁻¹ • b₁ ≤ b₂ ↔ a • b₂ ≤ b₁ := by
999-
rw [← smul_le_smul_iff_of_neg h, smul_inv_smul₀ h.ne]
1001+
rw [← smul_le_smul_iff_of_neg_left h, smul_inv_smul₀ h.ne]
10001002
#align inv_smul_le_iff_of_neg inv_smul_le_iff_of_neg
10011003

10021004
lemma smul_inv_le_iff_of_neg (h : a < 0) : b₁ ≤ a⁻¹ • b₂ ↔ b₂ ≤ a • b₁ := by
1003-
rw [← smul_le_smul_iff_of_neg h, smul_inv_smul₀ h.ne]
1005+
rw [← smul_le_smul_iff_of_neg_left h, smul_inv_smul₀ h.ne]
1006+
#align smul_inv_le_iff_of_neg smul_inv_le_iff_of_neg
10041007

10051008
variable (β)
10061009

10071010
/-- Left scalar multiplication as an order isomorphism. -/
1008-
@[simps]
1009-
def OrderIso.smulLeftDual (ha : a < 0) : β ≃o βᵒᵈ where
1010-
toFun b₂ := OrderDual.toDual (a • b₂)
1011-
invFun b₂ := a⁻¹ • OrderDual.ofDual b₂
1012-
left_inv := inv_smul_smul₀ ha.ne
1013-
right_inv := smul_inv_smul₀ ha.ne
1014-
map_rel_iff' := (@OrderDual.toDual_le_toDual β).trans <| smul_le_smul_iff_of_neg ha
1015-
#align order_iso.smul_left_dual OrderIso.smulLeftDual
1016-
#align smul_inv_le_iff_of_neg smul_inv_le_iff_of_neg
1011+
@[simps!]
1012+
def OrderIso.smulRightDual (ha : a < 0) : β ≃o βᵒᵈ where
1013+
toEquiv := (Equiv.smulRight ha.ne).trans toDual
1014+
map_rel_iff' := (@OrderDual.toDual_le_toDual β).trans <| smul_le_smul_iff_of_neg_left ha
1015+
#align order_iso.smul_left_dual OrderIso.smulRightDual
10171016

10181017
end PosSMulMono
10191018

10201019
variable [PosSMulStrictMono α β]
10211020

10221021
lemma inv_smul_lt_iff_of_neg (h : a < 0) : a⁻¹ • b₁ < b₂ ↔ a • b₂ < b₁ := by
1023-
rw [← smul_lt_smul_iff_of_neg h, smul_inv_smul₀ h.ne]
1022+
rw [← smul_lt_smul_iff_of_neg_left h, smul_inv_smul₀ h.ne]
10241023
#align inv_smul_lt_iff_of_neg inv_smul_lt_iff_of_neg
10251024

10261025
lemma smul_inv_lt_iff_of_neg (h : a < 0) : b₁ < a⁻¹ • b₂ ↔ b₂ < a • b₁ := by
1027-
rw [← smul_lt_smul_iff_of_neg h, smul_inv_smul₀ h.ne]
1026+
rw [← smul_lt_smul_iff_of_neg_left h, smul_inv_smul₀ h.ne]
10281027
#align smul_inv_lt_iff_of_neg smul_inv_lt_iff_of_neg
10291028

10301029
end Field
@@ -1181,7 +1180,7 @@ end Mathlib.Meta.Positivity
11811180
/-!
11821181
### Deprecated lemmas
11831182
1184-
Those lemmas have been deprecated on the 2023/12/23.
1183+
Those lemmas have been deprecated on 2023-12-23.
11851184
-/
11861185

11871186
@[deprecated] alias monotone_smul_left := monotone_smul_left_of_nonneg
@@ -1202,3 +1201,15 @@ Those lemmas have been deprecated on the 2023/12/23.
12021201
@[deprecated] alias OrderIso.smulLeft_symm_apply := OrderIso.smulRight_symm_apply
12031202
@[deprecated] alias OrderIso.smulLeft_apply := OrderIso.smulRight_apply
12041203
@[deprecated] alias smul_neg_iff_of_pos := smul_neg_iff_of_pos_left
1204+
1205+
/-!
1206+
Those lemmas have been deprecated on 2023-12-27.
1207+
-/
1208+
1209+
@[deprecated] alias strict_anti_smul_left := strictAnti_smul_left
1210+
@[deprecated] alias smul_le_smul_of_nonpos := smul_le_smul_of_nonpos_left
1211+
@[deprecated] alias smul_lt_smul_of_neg := smul_lt_smul_of_neg_left
1212+
@[deprecated] alias smul_pos_iff_of_neg := smul_pos_iff_of_neg_left
1213+
@[deprecated] alias smul_neg_iff_of_neg := smul_neg_iff_of_neg_left
1214+
@[deprecated] alias smul_le_smul_iff_of_neg := smul_le_smul_iff_of_neg_left
1215+
@[deprecated] alias smul_lt_smul_iff_of_neg := smul_lt_smul_iff_of_neg_left

Mathlib/Algebra/Order/Module/Pointwise.lean

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -91,19 +91,19 @@ variable [LinearOrderedField α] [OrderedAddCommGroup β] [Module α β] [PosSMu
9191
{a : α}
9292

9393
@[simp] lemma lowerBounds_smul_of_neg (ha : a < 0) : lowerBounds (a • s) = a • upperBounds s :=
94-
(OrderIso.smulLeftDual β ha).upperBounds_image
94+
(OrderIso.smulRightDual β ha).upperBounds_image
9595
#align lower_bounds_smul_of_neg lowerBounds_smul_of_neg
9696

9797
@[simp] lemma upperBounds_smul_of_neg (ha : a < 0) : upperBounds (a • s) = a • lowerBounds s :=
98-
(OrderIso.smulLeftDual β ha).lowerBounds_image
98+
(OrderIso.smulRightDual β ha).lowerBounds_image
9999
#align upper_bounds_smul_of_neg upperBounds_smul_of_neg
100100

101101
@[simp] lemma bddBelow_smul_iff_of_neg (ha : a < 0) : BddBelow (a • s) ↔ BddAbove s :=
102-
(OrderIso.smulLeftDual β ha).bddAbove_image
102+
(OrderIso.smulRightDual β ha).bddAbove_image
103103
#align bdd_below_smul_iff_of_neg bddBelow_smul_iff_of_neg
104104

105105
@[simp] lemma bddAbove_smul_iff_of_neg (ha : a < 0) : BddAbove (a • s) ↔ BddBelow s :=
106-
(OrderIso.smulLeftDual β ha).bddBelow_image
106+
(OrderIso.smulRightDual β ha).bddBelow_image
107107
#align bdd_above_smul_iff_of_neg bddAbove_smul_iff_of_neg
108108

109109
end LinearOrderedField

Mathlib/Data/Real/Pointwise.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -79,7 +79,7 @@ theorem Real.sInf_smul_of_nonpos (ha : a ≤ 0) (s : Set ℝ) : sInf (a • s) =
7979
· rw [zero_smul_set hs, zero_smul]
8080
exact csInf_singleton 0
8181
by_cases h : BddAbove s
82-
· exact ((OrderIso.smulLeftDual ℝ ha').map_csSup' hs h).symm
82+
· exact ((OrderIso.smulRightDual ℝ ha').map_csSup' hs h).symm
8383
· rw [Real.sInf_of_not_bddBelow (mt (bddBelow_smul_iff_of_neg ha').1 h),
8484
Real.sSup_of_not_bddAbove h, smul_zero]
8585
#align real.Inf_smul_of_nonpos Real.sInf_smul_of_nonpos
@@ -95,7 +95,7 @@ theorem Real.sSup_smul_of_nonpos (ha : a ≤ 0) (s : Set ℝ) : sSup (a • s) =
9595
· rw [zero_smul_set hs, zero_smul]
9696
exact csSup_singleton 0
9797
by_cases h : BddBelow s
98-
· exact ((OrderIso.smulLeftDual ℝ ha').map_csInf' hs h).symm
98+
· exact ((OrderIso.smulRightDual ℝ ha').map_csInf' hs h).symm
9999
· rw [Real.sSup_of_not_bddAbove (mt (bddAbove_smul_iff_of_neg ha').1 h),
100100
Real.sInf_of_not_bddBelow h, smul_zero]
101101
#align real.Sup_smul_of_nonpos Real.sSup_smul_of_nonpos

0 commit comments

Comments
 (0)