Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Merged by Bors] - chore(GroupTheory/Perm/Cycle/Basic): Split #10907

Closed
wants to merge 21 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions Mathlib.lean
Original file line number Diff line number Diff line change
Expand Up @@ -2333,13 +2333,16 @@ import Mathlib.GroupTheory.Order.Min
import Mathlib.GroupTheory.OrderOfElement
import Mathlib.GroupTheory.PGroup
import Mathlib.GroupTheory.Perm.Basic
import Mathlib.GroupTheory.Perm.Closure
import Mathlib.GroupTheory.Perm.ClosureSwap
import Mathlib.GroupTheory.Perm.Cycle.Basic
import Mathlib.GroupTheory.Perm.Cycle.Concrete
import Mathlib.GroupTheory.Perm.Cycle.Factors
import Mathlib.GroupTheory.Perm.Cycle.PossibleTypes
import Mathlib.GroupTheory.Perm.Cycle.Type
import Mathlib.GroupTheory.Perm.DomMulAct
import Mathlib.GroupTheory.Perm.Fin
import Mathlib.GroupTheory.Perm.Finite
import Mathlib.GroupTheory.Perm.List
import Mathlib.GroupTheory.Perm.Option
import Mathlib.GroupTheory.Perm.Sign
Expand Down
127 changes: 127 additions & 0 deletions Mathlib/GroupTheory/Perm/Closure.lean
Original file line number Diff line number Diff line change
@@ -0,0 +1,127 @@
/-
Copyright (c) 2019 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Yaël Dillies
-/

import Mathlib.GroupTheory.Perm.Cycle.Basic

#align_import group_theory.perm.cycle.basic from "leanprover-community/mathlib"@"e8638a0fcaf73e4500469f368ef9494e495099b3"

/-!
# Closure results for permutation groups

* This file contains several closure results:
* `closure_isCycle` : The symmetric group is generated by cycles
* `closure_cycle_adjacent_swap` : The symmetric group is generated by
a cycle and an adjacent transposition
* `closure_cycle_coprime_swap` : The symmetric group is generated by
a cycle and a coprime transposition
* `closure_prime_cycle_swap` : The symmetric group is generated by
a prime cycle and a transposition

-/

open Equiv Function Finset

open BigOperators

variable {ι α β : Type*}

namespace Equiv.Perm

section Generation

variable [Finite β]

open Subgroup

theorem closure_isCycle : closure { σ : Perm β | IsCycle σ } = ⊤ := by
classical
cases nonempty_fintype β
exact
top_le_iff.mp (le_trans (ge_of_eq closure_isSwap) (closure_mono fun _ => IsSwap.isCycle))
#align equiv.perm.closure_is_cycle Equiv.Perm.closure_isCycle

variable [DecidableEq α] [Fintype α]

theorem closure_cycle_adjacent_swap {σ : Perm α} (h1 : IsCycle σ) (h2 : σ.support = ⊤) (x : α) :
closure ({σ, swap x (σ x)} : Set (Perm α)) = ⊤ := by
let H := closure ({σ, swap x (σ x)} : Set (Perm α))
have h3 : σ ∈ H := subset_closure (Set.mem_insert σ _)
have h4 : swap x (σ x) ∈ H := subset_closure (Set.mem_insert_of_mem _ (Set.mem_singleton _))
have step1 : ∀ n : ℕ, swap ((σ ^ n) x) ((σ ^ (n + 1) : Perm α) x) ∈ H := by
intro n
induction' n with n ih
· exact subset_closure (Set.mem_insert_of_mem _ (Set.mem_singleton _))
· convert H.mul_mem (H.mul_mem h3 ih) (H.inv_mem h3)
simp_rw [mul_swap_eq_swap_mul, mul_inv_cancel_right, pow_succ]
rfl
have step2 : ∀ n : ℕ, swap x ((σ ^ n) x) ∈ H := by
intro n
induction' n with n ih
· simp only [Nat.zero_eq, pow_zero, coe_one, id_eq, swap_self, Set.mem_singleton_iff]
convert H.one_mem
· by_cases h5 : x = (σ ^ n) x
· rw [pow_succ, mul_apply, ← h5]
exact h4
by_cases h6 : x = (σ ^ (n + 1) : Perm α) x
· rw [← h6, swap_self]
exact H.one_mem
rw [swap_comm, ← swap_mul_swap_mul_swap h5 h6]
exact H.mul_mem (H.mul_mem (step1 n) ih) (step1 n)
have step3 : ∀ y : α, swap x y ∈ H := by
intro y
have hx : x ∈ (⊤ : Finset α) := Finset.mem_univ x
rw [← h2, mem_support] at hx
have hy : y ∈ (⊤ : Finset α) := Finset.mem_univ y
rw [← h2, mem_support] at hy
cases' IsCycle.exists_pow_eq h1 hx hy with n hn
rw [← hn]
exact step2 n
have step4 : ∀ y z : α, swap y z ∈ H := by
intro y z
by_cases h5 : z = x
· rw [h5, swap_comm]
exact step3 y
by_cases h6 : z = y
· rw [h6, swap_self]
exact H.one_mem
rw [← swap_mul_swap_mul_swap h5 h6, swap_comm z x]
exact H.mul_mem (H.mul_mem (step3 y) (step3 z)) (step3 y)
rw [eq_top_iff, ← closure_isSwap, closure_le]
rintro τ ⟨y, z, _, h6⟩
rw [h6]
exact step4 y z
#align equiv.perm.closure_cycle_adjacent_swap Equiv.Perm.closure_cycle_adjacent_swap

theorem closure_cycle_coprime_swap {n : ℕ} {σ : Perm α} (h0 : Nat.Coprime n (Fintype.card α))
(h1 : IsCycle σ) (h2 : σ.support = Finset.univ) (x : α) :
closure ({σ, swap x ((σ ^ n) x)} : Set (Perm α)) = ⊤ := by
rw [← Finset.card_univ, ← h2, ← h1.orderOf] at h0
cases' exists_pow_eq_self_of_coprime h0 with m hm
have h2' : (σ ^ n).support = ⊤ := Eq.trans (support_pow_coprime h0) h2
have h1' : IsCycle ((σ ^ n) ^ (m : ℤ)) := by rwa [← hm] at h1
replace h1' : IsCycle (σ ^ n) :=
h1'.of_pow (le_trans (support_pow_le σ n) (ge_of_eq (congr_arg support hm)))
rw [eq_top_iff, ← closure_cycle_adjacent_swap h1' h2' x, closure_le, Set.insert_subset_iff]
exact
⟨Subgroup.pow_mem (closure _) (subset_closure (Set.mem_insert σ _)) n,
Set.singleton_subset_iff.mpr (subset_closure (Set.mem_insert_of_mem _ (Set.mem_singleton _)))⟩
#align equiv.perm.closure_cycle_coprime_swap Equiv.Perm.closure_cycle_coprime_swap

theorem closure_prime_cycle_swap {σ τ : Perm α} (h0 : (Fintype.card α).Prime) (h1 : IsCycle σ)
(h2 : σ.support = Finset.univ) (h3 : IsSwap τ) : closure ({σ, τ} : Set (Perm α)) = ⊤ := by
obtain ⟨x, y, h4, h5⟩ := h3
obtain ⟨i, hi⟩ :=
h1.exists_pow_eq (mem_support.mp ((Finset.ext_iff.mp h2 x).mpr (Finset.mem_univ x)))
(mem_support.mp ((Finset.ext_iff.mp h2 y).mpr (Finset.mem_univ y)))
rw [h5, ← hi]
refine'
closure_cycle_coprime_swap (Nat.Coprime.symm (h0.coprime_iff_not_dvd.mpr fun h => h4 _)) h1 h2 x
cases' h with m hm
rwa [hm, pow_mul, ← Finset.card_univ, ← h2, ← h1.orderOf, pow_orderOf_eq_one, one_pow,
one_apply] at hi
#align equiv.perm.closure_prime_cycle_swap Equiv.Perm.closure_prime_cycle_swap

end Generation
Loading
Loading