Skip to content

lstm dimension match in function _step #130

@XiaoLiuAI

Description

@XiaoLiuAI

Hello

I'am learning the deep learning models following your code. I have a question while reading the code for lstm. As I understand, in the function lstm_layer, your input state_below is a 3d tensor with dimension [time_stamp, n_samples, dim_proj], this is used in function _step with theano.scan.

rval, updates = theano.scan(_step,
                                sequences=[mask, state_below],
                                outputs_info=[tensor.alloc(numpy_floatX(0.),
                                                           n_samples,
                                                           dim_proj),
                                              tensor.alloc(numpy_floatX(0.),
                                                           n_samples,
                                                           dim_proj)],
                                name=_p(prefix, '_layers'),
                                n_steps=nsteps)

But in the function _step, I saw

preact = tensor.dot(h_, tparams[_p(prefix, 'U')])
preact += x_
i = tensor.nnet.sigmoid(_slice(preact, 0, options['dim_proj']))
f = tensor.nnet.sigmoid(_slice(preact, 1, options['dim_proj']))
o = tensor.nnet.sigmoid(_slice(preact, 2, options['dim_proj']))
c = tensor.tanh(_slice(preact, 3, options['dim_proj']))
c = f * c_ + i * c
c = m_[:, None] * c + (1. - m_)[:, None] * c_
h = o * tensor.tanh(c)
h = m_[:, None] * h + (1. - m_)[:, None] * h_
return h, c

It seems that h_ has the dimension [n_samples, dim_proj] and x_ is state_below, how can the h returned by this function keeps the same dimension and contains the values computed based on x_k in step k?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions